菊头蝠科

这是特色条目,点此获取更多信息。
本页使用了标题或全文手工转换,现处于中国大陆简体模式
求闻百科,共笔求闻

菊头蝠科
小蹄鼻蝠
科学分类 编辑
界: 动物界 Animalia
门: 脊索动物门 Chordata
纲: 哺乳纲 Mammalia
目: 翼手目 Chiroptera
亚目: 阴翼手亚目 Yinpterochiroptera
总科: 菊头蝠总科 Rhinolophoidea
科: 菊头蝠科 Rhinolophidae
Gray, 1825
模式种
马铁菊头蝠
Rhinolophus ferrumequinum
Schreber, 1774

菊头蝠科学名:Rhinolophidae)是哺乳纲翼手目小蝙蝠亚目下的一,其下仅有菊头蝠属Rhinolophus)一个现生的,包括6个亚属共约100种,广泛分布于非洲、亚洲和澳洲的热带亚热带地区,在欧洲也有分布,另有一个已灭绝Palaeonycteris。菊头蝠属的蝙蝠俗称菊头蝠蹄鼻蝠,与蹄蝠科的亲缘关系接近,两者约于3400万至4000万年前分家,后者过去曾被归入本科中。此类蝙蝠的生物地理演化史复杂,可能有许多隐存种尚未被发现,已发表物种中也有些可能不存在明显基因分歧而应属同种。

菊头蝠为中小型的小蝙蝠,毛色为红棕色、橘红色或黑色,俗名“蹄鼻蝠”得名自其马蹄铁状的的鼻叶,有助于回声定位,它们产生声纳的占空比长,听觉相当发达;以昆虫蜘蛛为食;目前对其婚配系统的了解仍少,多配偶制单配偶制的物种皆有,孕期约为7周,每胎一般只产下一个幼仔,寿命约为6至7年,但曾有马铁菊头蝠存活超过30年的纪录。

许多种菊头蝠在漠南非洲东南亚南亚某些地区被人类食用或药用。许多研究显示菊头蝠身上带有多种SARS相关冠状病毒,可能为其自然宿主,造成严重疫情(SARS事件COVID-19疫情)的冠状病毒SARS-CoVSARS-CoV-2可能皆是源于菊头蝠的病毒。

分类历史

1799年法国博物学家贝尔纳·热尔曼·德·拉塞佩德描述发表了菊头蝠属,包括今属菊头蝠属和蹄蝠属菊头蝠超科的物种[1][2](p. xii),当时归属于蝙蝠科之下。1825年英国动物学家约翰·爱德华·格雷将蝙蝠科分为两个亚科,其中之一即为菊头蝠亚科(Rhinolophina)[3]。1836年英国动物学家托马斯·贝尔将菊头蝠亚科提升至科的层级,即菊头蝠科[4],因此贝尔有时被认为是本科的命名者[5],但多数文献仍以格雷为命名者[4][6]

许多动物学者曾尝试分拆菊头蝠属,1816年英国动物学家威廉·埃尔福德·里奇提出了新属Phyllorhina,格雷于1847年与1866年分别提出了AquiasPhyllotis两新属,1867年德国博物学家威廉·彼得斯提出了新属Coelophyllus。1876年爱尔兰动物学家乔治·爱德华·道布森提出将菊头蝠科分为菊头蝠亚科和Phyllorhininae(蹄蝠类)两个亚科,1907年美国动物学家格里特·史密斯·米勒进一步将蹄蝠提升为一独立的科蹄蝠科[2](p. xii),但直至2000年代早期都还有学者将蹄蝠类视为菊头蝠科下的物种[7],如今学者已大多同意将两者分为不同的科[8][9]。在蹄蝠类分出后,又有学者曾尝试继续分拆菊头蝠属,分别在1934年与1951年提出RhinolphyllotisRhinomegalophus等新属,但未获多数学者认同[2](p. xii)

1905年丹麦动物学家克努·安德森将菊头蝠属的物种分为6个种群R. simplexR. lepidusR. midasR. philippinensisR. macrotisR. arcuatus[2](p. xiii),后来种群的归属多次更动,2003年Csorba等人将菊头蝠属分成6个亚属AquiasPhyllorhinaRhinolophusIndorhinolophusCoelophyllusRhinophyllotis)共15个种群[2][10]。菊头蝠属大致可分为非洲类群与东方类群两大演化支[7]

本科包括以下属:[11]

形态

菊头蝠的鼻叶示意图

菊头蝠为中小型的小蝙蝠[8],体长为3.5至11公分,前肢长3至7.5公分,体型较小的物种小蹄鼻蝠重4至10公克,体型较大的马铁菊头蝠则重16.5至28公克。菊头蝠的毛色因物种而异,黑色、红棕色与橘红色者皆有[12][13],腹部毛色一般较背部浅[12]。多数物种的毛长且柔软,大菊头蝠小绒菊头蝠的毛特别长且质地似羊毛[13]

菊头蝠与其他蝙蝠一样胸前具有一对乳头,雌蝠在腹部还有一对不具乳腺的假乳头,为幼仔附着之处(蹄蝠科、凹脸蝠科假吸血蝠科鼠尾蝠科等菊头蝠超科的其他类群也具有假乳头)[14],部分物种的雄蝠腋窝也有一对假乳头[8]

头部

马铁菊头蝠的头骨

菊头蝠的鼻上有称为鼻叶的大型叶状突起物[8],其型态为物种鉴定的依据[15],菊头蝠的俗名蹄鼻蝠(英语:horshoe bat)即是因鼻叶的正面形似马蹄铁状而得名[8],鼻叶可细分为鞍(sella)、柳叶刀状结构(lancet)与马蹄铁状结构(horseshoe)等部分,其中鞍为鼻叶中部的一突起;柳叶刀状结构位于鼻叶上部,呈倒三角形,往上延伸至双眼中间;马蹄铁状结构则位于鼻叶下部、上唇上方,外观平坦[15]

菊头蝠的耳朵较大,呈叶状,缺乏耳屏对耳屏相当明显;其眼睛很小[8];典型的齿式1.1.2.32.1.3.3,但有时缺乏上下方中间的前臼齿[2](p. xi),相较于多数蝙蝠出生时仍有乳齿,随后才快速替换成恒齿[16],菊头蝠的幼仔仍在母亲子宫内时就会失去乳齿[12],出生时即有犬齿可用来咬附在母亲身上[17]

颅后

菊头蝠胸部的前胸骨(presternum)、第一对肋骨、第二对肋骨的一部分、第七块颈椎骨以及第一块胸椎骨相互融合成一环状结构[2](p. xi),与其在静止时进行回声定位的能力有关[18];其手指除第一指有两块指骨,其他指都有三块指骨[12],脚趾则皆有三块趾骨[2](p. xi),相较之下与其相近的蹄蝠科蝙蝠脚趾皆是两块趾骨组成[8]

菊头蝠的尾部完全被皮膜包覆[2](p. xi),皮膜后缘有(突出的软骨结构)[8]

分布

菊头蝠主要分布于旧大陆的热带亚热带地区[8],即生物地理学上的旧热带界,也有少数物种分布于古北界南部[19],在非洲、亚洲、欧洲与澳洲皆有分布[7],其中马铁菊头蝠分布的范围最广,包括欧洲、北非、日本、中国与南亚等地,有些物种则为特有种,如安达曼马蹄蝠仅分布于安达曼群岛[13]。菊头蝠可栖息于大楼、洞窟、树洞与树林中等多种环境,其中有些物种会在洞窟中冬眠[20]

习性

回声定位

菊头蝠的鼻叶可能有助于集中声纳讯号。图为烟熏菊头蝠

菊头蝠的眼睛很小且视野被鼻叶遮挡,视觉应不发达,而主要仰赖回声定位[13],其回声定位机制是蝙蝠中数一数二复杂的[21]。菊头蝠仅发出固定频率的声波[22](在蝙蝠声波中算频率较高的),其占空比(有荷比)长,在声波周期中有超过30%的时间发出讯号,此系统有助于在树叶茂密处寻找移动中的猎物[21][注 1],充满皱折的鼻叶可能有助于集中发出的声波讯号,有类似抛物面镜的功能,并避免自己发出的讯号传进耳朵而造成干扰[22]。多数菊头蝠将能量集中在声纳的第二泛音贵州菊头蝠菲律宾菊头蝠是少数将能量集中在第一泛音的物种[24]

菊头蝠的听觉相当发达,其耳蜗结构复杂[8],可侦测回传的多普勒讯号[2],进行回声定位时两耳可独立摆动,头部也会上下或左右移动[8]。菊头蝠属中耳朵较短的物种发出的声纳频率通常较高,两者呈负相关[24]

食性

菊头蝠主要以昆虫为食,有时也取食蜘蛛等小型节肢动物[12],主要有两种掠食方式,一为在低处缓速飞行以捕食猎物,一为停栖捕食(perch feeding),即在停栖处等待猎物飞过再起飞捕食[2](p. xi)。菊头蝠不像蝙蝠科的蝙蝠一样可用基片(Uropatagium,后肢间的皮膜)捕抓猎物,不过马铁菊头蝠有用翅膀前端的指头抓取猎物、再送至口中的纪录[8][25]。绝大多数的菊头蝠为夜行性,在夜间捕食,马来西亚刁曼岛短翼菊头蝠会在白天捕食,可能是因为该岛上没有会捕食蝙蝠的日行性鸟类掠食者[26]

天敌与寄生虫

蝙蝠在野外的天敌不多[27],已知猫头鹰等鸟类会捕食菊头蝠[28][29],有些菊头蝠停栖在洞窟中时可能被蛇类捕食[30],此外家猫也可能为其天敌[31],曾有研究在猫的粪便中发现马铁菊头蝠的残骸[32]

菊头蝠可能被多种寄生虫感染,外寄生虫包括埃螨属蛛蝇科蝙蝠蝇科[33]硬蜱属[34]以及Rhinolophopsylla属的跳蚤[35],内寄生虫则有LecithodendriumPlagiorchisProsthodendrium属的吸虫[36]以及Potorolepsis属的绦虫[37]

繁殖

目前对菊头蝠的交配系统所知仍有限,2000年的一篇文章提到当时仅有4%的菊头蝠有关于交配系统的观察纪录。马铁菊头蝠应为多配偶制(一夫多妻)的物种,雄蝠会建立、防御其领域并吸引多只雌蝠与之交配,小绒菊头蝠则为单配偶制(一夫一妻)[38]。有些物种(特别是温带的物种)于秋季繁殖,有些则于春季繁殖[12]。许多菊头蝠有雌性精子存储(FSS)的行为,即交配后精子会先储存在雌蝠体内而不立刻与卵子结合,在温带的物种中尤为常见[2](p. xi);另外有些菊头蝠(如Rhinolophus landeri)有胚胎滞育的现象,虽精子在交配后立即与卵子结合,但合子经过一段时间的延迟后才会着床于子宫壁[8]。马铁菊头蝠的雌蝠若在受精后蛰伏,其胚胎也会延后发育,使其受精至生子的孕期可能为两至三个月不等[39]。一般菊头蝠孕期约为7周,个体于2岁时达到性成熟,寿命约为6至7年,但曾有马铁菊头蝠存活超过30年的纪录[12]

社会性

多数菊头蝠有一定社会性,虽独自猎食但会群居生活[12],由上千只蝙蝠组成一族群[2](p. xi),有些物种(如西班牙菊头蝠[40]、小蹄鼻蝠[41]鲁氏菊头蝠[42])怀孕与哺乳中的雌蝠在繁殖季时会组成生殖群集,其他时间则为雌雄聚居。另外也有些物种的菊头蝠为独居生活[2](p. xi)

有些菊头蝠会蛰伏冬眠,会蛰伏的物种包括生存于热带、亚热带与温带者[43],蛰伏时其体温会降低至摄氏16度,代谢率大幅下降[44],长时间的蛰伏即为冬眠[45],会冬眠的物种大多为生存于温带地区者[43]

演化

早中新世的菊头蝠Palaeonycteris robustus颔骨化石

菊头蝠科的最近共同祖先于距今约3400万至4000万年前的始新世与蹄蝠类分家[7][19],在欧洲、非洲与澳洲均有菊头蝠的化石出土[13]。菊头蝠演化的历史生物地理学尚不清楚,2010年的一篇研究主张其起源于亚洲,且亚洲与非洲的演化支在渐新世时皆发生了快速的辐射演化[7];一篇2019年的研究发现中国的楔鞍菊头蝠与日本的日本菊头蝠R. nippon)和一些非洲菊头蝠的亲缘关系可能比和其他亚洲菊头蝠的关系更为接近,显示其演化史相当复杂[19]

一篇2016年的分子系统发生学研究结果显示菊头蝠科为蹄蝠科的姐妹群[46]

菊头蝠科仅有菊头蝠属一个现生的属,两者均为单系群,截至2019年菊头蝠属下共有106种物种,为蝙蝠中物种次多的属(仅次于鼠耳蝠属),且有学者认为漠南非洲还有许多未被描述的菊头蝠属物种,有研究显示当地可能有多达12个隐存种。另外,本属许多物种可能没有明显的遗传分歧,故应视为同种,例如卡胡兹菊头蝠鲁文佐里菊头蝠戈隆戈萨菊头蝠罗德西亚菊头蝠北非菊头蝠;以及史密瑟氏菊头蝠柯恩氏菊头蝠马布菊头蝠[19]。除菊头蝠属外,本科还有一个已灭绝Palaeonycteris,生存年代为早中新世,其化石在法国圣热朗勒皮出土[47][48]

与人类关系

病毒自然宿主

冠状病毒

各蝙蝠物种中发现的SARS相关冠状病毒株数[49]
蝙蝠物种 SARS相关冠状病毒株数
中华菊头蝠
30
马铁菊头蝠
9
大耳菊头蝠
2
小菊头蝠
2
中菊头蝠
1
布腊氏菊头蝠
1
三叶蹄蝠(属蹄蝠科)
1
皱唇犬吻蝠(属犬吻蝠科
1
有多种SARSr-CoV为自中华菊头蝠身上发现

菊头蝠为多种冠状病毒自然宿主。2003年SARS事件后,研究人员在中国各地的多种菊头蝠身上发现与SARS-CoV相似的病毒株(SARSr-CoV),以自中华菊头蝠样本中发现的最多,也有自马铁菊头蝠、大耳菊头蝠、小菊头蝠、中菊头蝠布腊氏菊头蝠样本中发现者[49][50]。2005年,研究人员发表了HKU3Rf1Rm1Rp3等SARS相关病毒株,分别在中华菊头蝠、马铁菊头蝠、大耳菊头蝠与皮氏菊头蝠身上发现[51][52];2015年又发表了WIV1SHC014两病毒株,皆采自中华菊头蝠,与SARS-CoV的相似度比前述四种病毒株更高[53],且可能具跨越物种感染人类的潜力[54][55];2016年发表了迄今发现与SARS-CoV全基因组相似度最高的蝙蝠病毒WIV16病毒,相似度达96%,为自云南的中华菊头蝠身上发现[56];2017年发表了自云南一处洞窟中的菊头蝠(中华菊头蝠为主)发现的多个病毒株,包括与SARS-CoV分别在基因组各区域高度相似者,显示SARS-CoV可能是由这些病毒株(或相关病毒株)经基因重组产生[57]。以上蝙蝠病毒株的发现,皆支持中华菊头蝠可能为感染人类的SARS-CoV之源头,其病毒株经多次基因重组后溢出至市场中的果子狸果子狸SARS冠状病毒),再传播给人类[58][59]

截至2021年1月 (2021-01)SARS-CoV与相关病毒株的系统发生树


 蝙蝠病毒

 果子狸病毒

 人类病毒


SARS-CoV-2的电脑成像

2020年1月2019冠状病毒病疫情甫爆发时,研究人员发现自浙江舟山菊头蝠中发现的ZC45病毒与ZXC21病毒是当时已知核酸序列与造成疫情之SARS-CoV-2最接近的病毒,相似度约为88%[64],但不久后即发现自云南中菊头蝠样本中采集的RaTG13病毒和SARS-CoV-2相似度更高,达96.2%,SARS-CoV-2很可能起源自菊头蝠[65],但传播至人类的途径仍不明朗,随后又有另一种自云南马来亚菊头蝠身上采得的冠状病毒(RmYN02病毒)发表[66]中国海关截获自东南亚走私的马来穿山甲因也带有和SARS-CoV-2相似的病毒(穿山甲冠状病毒),被怀疑为其中间宿主[67],但仍未被证实[68]。后来日本、柬埔寨与泰国的菊头蝠中也发现了和SARS-CoV-2相似的冠状病毒[69]

SARS-CoV-2与相关病毒株的系统发生树[69][70] :


 蝙蝠病毒

 穿山甲病毒

 人类病毒

其他病毒

鲁氏菊头蝠身上曾被发现带有凯萨努森林病毒

除冠状病毒外,菊头蝠身上还可能带有正呼肠孤病毒黄热病毒汉他病毒等其他病毒。小菊头蝠与小蹄鼻蝠身上曾发现带有不同类型的哺乳动物正呼肠孤病毒(MRV),但尚无证据显示其可感染人类[74];印度南部的鲁氏菊头蝠身上曾被发现带有可造成一种病毒性出血热凯萨努森林病毒(属黄热病毒)[75];中国的中菊头蝠、中华菊头蝠与角菊头蝠身上曾发现有龙泉病毒(属汉他病毒)[76]

药用与食用

相较于大型蝙蝠,菊头蝠等小型蝙蝠较少被人类作为食物来源,但仍有许多物种在漠南非洲与东南亚被人类猎食,在非洲被食用的物种包括鱼狗菊头蝠几内亚菊头蝠林菊头蝠Rhinolophus hilliRhinolophus maclaudiRhinolophus ziama马氏菊头蝠广鞍菊头蝠则分别在缅甸菲律宾被食用[77]

除食用外,菊头蝠还在亚洲与非洲被用来入药,印度东北部的阿沃-那加人有用菊头蝠的肉来治疗哮喘的纪录;尼泊尔内瓦尔人用菊头蝠与蹄蝠来制作“蝙蝠油”(Cikā Lāpa Wasa),将蝙蝠的尸体浸泡在密封的芥子油中制成,蝙蝠油被当地人用来治疗“耳虫”(可能为传统文化中对偏头痛的解释)、秃头和麻痹等疾患[78]塞内加尔据传有马拉博特(伊斯兰修士)用烟熏菊头蝠制作药水来治疗精神疾病者;越南则有一生技公司每年使用多达50公吨菊头蝠的粪便制药[79]

保育

截至2020年,国际自然保护联盟(IUCN)已评估了92种菊头蝠的保育状况,结果如下[80]

菊头蝠与其他栖息于洞窟中的蝙蝠一样受到蝙蝠粪开采、石灰岩开采与洞窟旅游等人类活动造成的栖地干扰[20]

注脚

  1. 鸟类、鲸豚与多数蝙蝠的声波为短工作周期(low duty cycle,LDC),在声波周期中只有少部分的时间发出讯号,大部分时间不发出讯号以避免自己发出的讯号和回声讯号互相混淆,此类动物的声波多具频率调变;菊头蝠等长工作周期(high duty cycle,HDC)则借由回声的多普勒效应来判定猎物,更适于侦测昆虫飞行时翅膀反射的回声。长工作周期的回声定位系统可能是由低工作周期演化而来[23]

参考资料

  1. Springer, M. S.; Teeling, E. C.; Madsen, O.; Stanhope, M. J.; De Jong, W. W. Integrated fossil and molecular data reconstruct bat echolocation. Proceedings of the National Academy of Sciences. 2001, 98 (11): 6241–6246. Bibcode:2001PNAS...98.6241S. PMC 33452可免费查阅. PMID 11353869. doi:10.1073/pnas.111551998. 
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 Csorba, G.; Ujhelyi, P.; Thomas, P. Horseshoe Bats of the World: (Chiroptera: Rhinolophidae). Alana Books. 2003. ISBN 9780953604913. 
  3. Gray, J. E. An attempt at a division of the family Vespertilionidae into groups. The Zoological Journal. 1825, 2: 242 [2021-06-10]. 
  4. 4.0 4.1 McKenna, M. C.; Bell, S. K. Classification of mammals: above the species level. Columbia University Press. 1997: 305. ISBN 9780231528535. 
  5. Taylor, Peter J.; Stoffberg, Samantha; Monadjem, Ara; Schoeman, Martinus Corrie; Bayliss, Julian; Cotterill, Fenton P. D. Four New Bat Species (Rhinolophus hildebrandtii Complex) Reflect Plio-Pleistocene Divergence of Dwarfs and Giants across an Afromontane Archipelago. PLOS ONE. 2012, 7 (9): e41744. Bibcode:2012PLoSO...741744T. PMC 3440430可免费查阅. PMID 22984399. doi:10.1371/journal.pone.0041744. 
  6. Family Rhinolophidae. Mammal Species of the World. Bucknell University. [2020-07-23]. 
  7. 7.0 7.1 7.2 7.3 7.4 Stoffberg, Samantha; Jacobs, David S.; MacKie, Iain J.; Matthee, Conrad A. Molecular phylogenetics and historical biogeography of Rhinolophus bats. Molecular Phylogenetics and Evolution. 2010, 54 (1): 1–9. PMID 19766726. doi:10.1016/j.ympev.2009.09.021. 
  8. 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 8.12 Happold, M.; Cotterill, F. P. D. Kingdon, J.; Happold, D.; Butynski, T.; Hoffmann, M.; Happold, M.; Kalina, J. , 编. Mammals of Africa 4. A&C Black. 2013: 300–303. ISBN 9781408189962. 
  9. Wilson, Don E.; Reeder, DeeAnn M. (编). Family Hipposideridae. Mammal Species of the World 3rd. Bucknell University. 2005 [2020-07-23]. 
  10. Volleth, Marianne; Loidl, Josef; Mayer, Frieder; Yong, Hoi-Sen; Müller, Stefan; Heller, Klaus-Gerhard. Surprising Genetic diversity in Rhinolophus luctus (Chiroptera: Rhinolophidae) from peninsular Malaysia: Description of a new species based on genetic and morphological characters. Acta Chiropterologica. 2015, 17: 1–20. S2CID 86009452. doi:10.3161/15081109ACC2015.17.1.001. 
  11. Rhinolophidae. GBIF. [2022-12-08]. 
  12. 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 Nowak, Ronald M. Walker's Bats of the World. JHU Press. 1994: 108–110. ISBN 978-0-8018-4986-2. 
  13. 13.0 13.1 13.2 13.3 13.4 Geist, V.; Kleiman, D. G.; McDade, M. C. Grzimek's Animal Life Encyclopedia Mammals II 13 2nd. Gale. 2004: 387–393. ISBN 978-0787657895. 
  14. Simmons, N. B. Morphology, function, and phylogenetic significance of pubic nipples in bats (Mammalia, Chiroptera) (PDF). American Museum Novitates. 1993, (3077) [2021-06-10]. 
  15. 15.0 15.1 Hall, Leslie. Rhinolophidae. Walton, D.W.; Richardson, B.J. (编). Fauna of Australia (PDF). AGPS Canberra. 1989 [2021-06-27]. 
  16. Vaughan, T. Chapter 3: The Skeletal System. Wimsatt, W. (编). Biology of Bats. Academic Press. 1970: 103–136. ISBN 9780323151191. 
  17. Hermanson, J. W.; Woods, C. A.; Howell, K. M. Dental ontogeny in the Old World leaf-nosed bats (Rhinolophidae, Hipposiderinae). Journal of Mammalogy. 1982, 63 (3): 527–529. JSTOR 1380461. doi:10.2307/1380461. 
  18. Stoffberg, Samantha; Jacobs, David S.; MacKie, Iain J.; Matthee, Conrad A. Molecular phylogenetics and historical biogeography of Rhinolophus bats. Molecular Phylogenetics and Evolution. 2010, 54 (1): 1–9. PMID 19766726. doi:10.1016/j.ympev.2009.09.021. 
  19. 19.0 19.1 19.2 19.3 Demos, Terrence C.; Webala, Paul W.; Goodman, Steven M.; Kerbis Peterhans, Julian C.; Bartonjo, Michael; Patterson, Bruce D. Molecular phylogenetics of the African horseshoe bats (Chiroptera: Rhinolophidae): Expanded geographic and taxonomic sampling of the Afrotropics. BMC Evolutionary Biology. 2019, 19 (1): 166. PMC 6704657可免费查阅. PMID 31434566. doi:10.1186/s12862-019-1485-1. 
  20. 20.0 20.1 Furey, Neil M.; Racey, Paul A. Conservation Ecology of Cave Bats. Bats in the Anthropocene: Conservation of bats in a changing world. Springer, Cham. 2016: 463–500. ISBN 978-3-319-25218-6. doi:10.1007/978-3-319-25220-9_15. 
  21. 21.0 21.1 Jones, G.; Teeling, E. The evolution of echolocation in bats. Trends in Ecology & Evolution. 2006, 21 (3): 149–156. PMID 16701491. doi:10.1016/j.tree.2006.01.001. 
  22. 22.0 22.1 Vanderelst, Dieter; Jonas, Reijniers; Herbert, Peremans. The furrows of Rhinolophidae revisited. Journal of the Royal Society Interface. 2012, 9 (70): 1100–1103. PMC 3306658可免费查阅. PMID 22279156. doi:10.1098/rsif.2011.0812. 
  23. Fenton MB, Faure PA, Ratcliffe JM. Evolution of high duty cycle echolocation in bats.. J Exp Biol. 2012, 215 (Pt 17): 2935–44 [2021-07-09]. PMID 22875762. doi:10.1242/jeb.073171. 
  24. 24.0 24.1 Huihua, Zhao; Shuyi, Zhang; Mingxue, Zuo; Jiang, Zhou. Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae. Journal of Zoology. 2003, 259 (2): 189–195. doi:10.1017/S0952836902003199. 
  25. Webster, Frederic A.; Griffin, Donald R. The role of the flight membranes in insect capture by bats. Animal Behaviour. 1962, 10 (3–4): 332–340. doi:10.1016/0003-3472(62)90056-8. 
  26. Chua, Marcus A.H.; Aziz, Sheema Abdul. Into the light: atypical diurnal foraging activity of Blyth's horseshoe bat, Rhinolophus lepidus (Chiroptera: Rhinolophidae) on Tioman Island, Malaysia. Mammalia. 2018-12-19, 83 (1): 78–83 [2021-06-11]. ISSN 1864-1547. S2CID 90531252. doi:10.1515/mammalia-2017-0128. 
  27. Nyffeler, Martin; Knörnschild, Mirjam. Bat Predation by Spiders. PLOS ONE. 2013, 8 (3): e58120. Bibcode:2013PLoSO...858120N. PMC 3596325可免费查阅. PMID 23516436. doi:10.1371/journal.pone.0058120. 
  28. Mikula, Peter; Morelli, Federico; Lučan, Radek K.; Jones, Darryl N.; Tryjanowski, Piotr. Bats as prey of diurnal birds: a global perspective: Predation of bats by diurnal birds. Mammal Review. 2016, 46 (3): 160–174. doi:10.1111/mam.12060. 
  29. García, A. M.; Cervera, F.; Rodríguez, A. Bat predation by long-eared Owls in mediterranean and temperate regions of southern Europe (PDF). Journal of Raptor Research. 2005, 39 (4): 445–453 [2021-06-11]. 
  30. Barti, Levente; Péter, Áron; Csősz, István; Sándor, Attila D. Snake predation on bats in Europe: New cases and a regional assessment (PDF). Mammalia. 2019, 83 (6): 581–585 [2021-06-11]. S2CID 92282216. doi:10.1515/mammalia-2018-0079. 
  31. Ancillotto, Leonardo; Serangeli, Maria Tiziana; Russo, Danilo. Curiosity killed the bat: Domestic cats as bat predators. Mammalian Biology. 2013, 78 (5): 369–373. doi:10.1016/j.mambio.2013.01.003. 
  32. Ancillotto, L.; Venturi, G.; Russo, D. Presence of humans and domestic cats affects bat behaviour in an urban nursery of greater horseshoe bats (Rhinolophus ferrumequinum). Behavioural Processes. 2019, 164: 4–9. PMID 30951813. S2CID 92844287. doi:10.1016/j.beproc.2019.04.003. 
  33. Sharifi, Mozafar; Taghinezhad, Najmeh; Mozafari, Fatema; Vaissi, Somaye. Variation in ectoparasite load in the Mehely's horseshoe bat, Rhinolophus mehelyi (Chiroptera: Rhinolophidae) in a nursery colony in western Iran. Acta Parasitologica. 2013, 58 (2): 180–184. PMID 23666653. S2CID 7173658. doi:10.2478/s11686-013-0122-1. 
  34. Hornok, Sándor; Görföl, Tamás; Estók, Péter; Tu, Vuong Tan; Kontschán, Jenő. Description of a new tick species, Ixodes collaris n. sp. (Acari: Ixodidae), from bats (Chiroptera: Hipposideridae, Rhinolophidae) in Vietnam. Parasites & Vectors. 2016, 9 (1): 332. PMC 4902904可免费查阅. PMID 27286701. doi:10.1186/s13071-016-1608-0. 
  35. Kotti, B. K. Distribution and Specificity of Host-Parasite Associations of Fleas (Siphonaptera) in the Central Caucasus. Entomological Review. 2018, 98 (9): 1342–1350. S2CID 85527706. doi:10.1134/S0013873818090129. 
  36. Horvat, Ž.; Čabrilo, B.; Paunović, M.; Karapandža, B.; Jovanović, J.; Budinski, I.; Bjelić Čabrilo, O. Gastrointestinal digeneans (Platyhelminthes: Trematoda) of horseshoe and vesper bats (Chiroptera: Rhinolophidae and Vespertilionidae) in Serbia. Helminthologia. 2017, 54: 17–25. S2CID 90530235. doi:10.1515/helm-2017-0009可免费查阅. 
  37. Makarikova, Ò. À.; Makarikov, A. A. First report of Potorolepis Spassky, 1994 (Eucestoda: Hymenolepididae) from China, with description of a new species in bats (Chiroptera:: Rhinolophidae). Folia Parasitologica. 2012, 59 (4): 272–278. PMID 23327008. doi:10.14411/fp.2012.038可免费查阅. 
  38. McCracken, Gary F.; Wilkinson, Gerald S. Bat Mating Systems. Reproductive Biology of Bats. 2000: 321–362. ISBN 9780121956707. doi:10.1016/B978-012195670-7/50009-6. 
  39. Gaisler, J. Kingdon, J.; Happold, D.; Butynski, T.; Hoffmann, M.; Happold, M.; Kalina, J. , 编. Mammals of Africa 4. A&C Black. 2013: 327–328. ISBN 9781408189962. 
  40. Sharifi, Mozafar. Postnatal Growth and Age Estimation in the Mehely's Horseshoe Bat (Rhinolophus mehelyi). Acta Chiropterologica. 2004, 6 (1): 155–161. ISSN 1508-1109. doi:10.3161/001.006.0112. 
  41. Bontadina, F., Arlettaz, R., Fankhauser, T., Lutz, M., Mühlethaler, E., Theiler, A., & Zingg, P. The lesser horseshoe bat Rhinolophus hipposideros in Switzerland: present status and research recommendations. Le Rhinolophe. 2000, 14: 69-83. 
  42. Biswas, J., & Shrotriya, S. Dandak: a mammalian dominated cave ecosystem of India. Subterranean Biology. 2011, 8: 1. 
  43. 43.0 43.1 Geiser, F.; Stawski, C. Hibernation and Torpor in Tropical and Subtropical Bats in Relation to Energetics, Extinctions, and the Evolution of Endothermy. Integrative and Comparative Biology. 2011, 51 (3): 337–348. PMID 21700575. doi:10.1093/icb/icr042可免费查阅. 
  44. Geiser, Fritz; Körtner, Gerhard. Hibernation and daily torpor in Australian mammals. Australian Zoologist. 2010, 35 (2): 204–215. doi:10.7882/AZ.2010.009可免费查阅. 
  45. Altringham, John D. Bats: From Evolution to Conservation. Oxford University Press. 2011: 99. ISBN 9780191548727. 
  46. Amador, L. I.; Arévalo, R. L. M.; Almeida, F. C.; Catalano, S. A.; Giannini, N. P. Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. Journal of Mammalian Evolution. 2018, 25: 37–70. S2CID 3318167. doi:10.1007/s10914-016-9363-8. 
  47. Lydekker, Richard. Catalogue of the Fossil Mammalia in the British Museum, (Natural History): The orders Primates, Chiroptera, Insectivora, Carnivora, and Rodentia. Order of the Trustees. 1885: 13 [2021-06-10]. 
  48. Bogdanowicz, W.; Owen, R. D. Phylogenetic analyses of the bat family Rhinolophidae (PDF). Journal of Zoological Systematics and Evolutionary Research. 1992, 30 (2): 152 [2021-06-10]. doi:10.1111/j.1439-0469.1992.tb00164.x. The sole fossil genus, Palaeonycteris, is known from the Miocene of Europe (Heller 1936; Sigb and Legendre 1983; Hand 1984; cf. Simpson 1945 and Hall 1989) 
  49. 49.0 49.1 Luk, Hayes K.H.; Li, Xin; Fung, Joshua; Lau, Susanna K.P.; Woo, Patrick C.Y. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infection, Genetics and Evolution. 2019, 71: 21–30. PMC 7106202可免费查阅. PMID 30844511. doi:10.1016/j.meegid.2019.03.001可免费查阅. 
  50. Shi, Zhengli; Hu, Zhihong. A review of studies on animal reservoirs of the SARS coronavirus. Virus Research. 2008-4, 133 (1) [2022-11-05]. ISSN 0168-1702. PMC 7114516可免费查阅. PMID 17451830. doi:10.1016/j.virusres.2007.03.012. 
  51. 51.0 51.1 51.2 Li, W. Bats Are Natural Reservoirs of SARS-Like Coronaviruses. Science. 2005, 310 (5748): 676–679. ISSN 0036-8075. doi:10.1126/science.1118391. 
  52. Lau, S. K. P.; Woo, P. C. Y.; Li, K. S. M.; Huang, Y.; Tsoi, H.-W.; Wong, B. H. L.; Wong, S. S. Y.; Leung, S.-Y.; Chan, K.-H.; Yuen, K.-Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the National Academy of Sciences. 2005, 102 (39): 14040–14045. ISSN 0027-8424. doi:10.1073/pnas.0506735102. 
  53. 53.0 53.1 53.2 Xing-Yi Ge; Jia-Lu Li; Xing-Lou Yang; et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013, 503 (7477): 535–8. Bibcode:2013Natur.503..535G. PMC 5389864可免费查阅. PMID 24172901. doi:10.1038/nature12711. 
  54. Menachery, Vineet D.; Yount, Boyd L.; Sims, Amy C.; Debbink, Kari; Agnihothram, Sudhakar S.; Gralinski, Lisa E.; Graham, Rachel L.; Scobey, Trevor; et al. SARS-like WIV1-CoV poised for human emergence. Proceedings of the National Academy of Sciences. 2016, 113 (11): 3048–3053. ISSN 0027-8424. doi:10.1073/pnas.1517719113. 
  55. Menachery, Vineet D; Yount, Boyd L; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E; Plante, Jessica A; Graham, Rachel L; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F; Randell, Scott H; Lanzavecchia, Antonio; Marasco, Wayne A; Shi, Zhengli-Li; Baric, Ralph S. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nature Medicine. 2015, 21 (12): 1508–1513. ISSN 1078-8956. doi:10.1038/nm.3985. 
  56. 56.0 56.1 Yang XL, Hu B, Wang B, Wang MN, Zhang Q, Zhang W; et al. Isolation and Characterization of a Novel Bat Coronavirus Closely Related to the Direct Progenitor of Severe Acute Respiratory Syndrome Coronavirus.. J Virol. 2016, 90 (6): 3253–6. PMC 4810638可免费查阅. PMID 26719272. doi:10.1128/JVI.02582-15. 
  57. Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B; et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus.. PLoS Pathog. 2017, 13 (11): e1006698 [2021-07-09]. PMC 5708621可免费查阅. PMID 29190287. doi:10.1371/journal.ppat.1006698. 
  58. Wang, Lin-Fa; Shi, Zhengli; Zhang, Shuyi; Field, Hume; Daszak, Peter; Eaton, Bryan. Review of Bats and SARS. Emerging Infectious Diseases. 2006, 12 (12): 1834–1840. PMC 3291347可免费查阅. PMID 17326933. doi:10.3201/eid1212.060401. 
  59. Yuan J, Hon CC, Li Y, Wang D, Xu G, Zhang H; et al. Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans.. J Gen Virol. 2010, 91 (Pt 4): 1058–62 [2021-07-09]. PMID 20016037. doi:10.1099/vir.0.016378-0. 
  60. Kim Y, Son K, Kim YS, Lee SY, Jheong W, Oem JK. Complete genome analysis of a SARS-like bat coronavirus identified in the Republic of Korea.. Virus Genes. 2019, 55 (4): 545–549. PMC 7089380可免费查阅. PMID 31076983. doi:10.1007/s11262-019-01668-w. 
  61. 61.0 61.1 Xing‐Yi Ge, Ben Hu, and Zheng‐Li Shi. BAT CORONAVIRUSES. Lin-Fa Wang and Christopher Cowled (编). Bats and Viruses: A New Frontier of Emerging Infectious Diseases, First Edition.. John Wiley & Sons. 2015. 
  62. He B, Zhang Y, Xu L, Yang W, Yang F, Feng Y; et al. Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China.. J Virol. 2014, 88 (12): 7070–82. PMC 4054348可免费查阅. PMID 24719429. doi:10.1128/JVI.00631-14. 
  63. 63.0 63.1 Lau, Susanna K. P.; Feng, Yun; Chen, Honglin; Luk, Hayes K. H.; Yang, Wei-Hong; Li, Kenneth S. M.; Zhang, Yu-Zhen; Huang, Yi; et al. Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination. Journal of Virology. 2015, 89 (20): 10532–10547. ISSN 0022-538X. doi:10.1128/JVI.01048-15. 
  64. Jiang, Shibo; Du, Lanying; Shi, Zhengli. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies. Emerging Microbes & Infections. 2020, 9 (1): 275–277. ISSN 2222-1751. doi:10.1080/22221751.2020.1723441. 
  65. 65.0 65.1 Zhou, Peng; Yang, Xing-Lou; Wang, Xian-Guang; Hu, Ben; Zhang, Lei; Zhang, Wei; Si, Hao-Rui; Zhu, Yan; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020, 579 (7798): 270–273. ISSN 0028-0836. doi:10.1038/s41586-020-2012-7. 
  66. 66.0 66.1 Zhou, Hong; Chen, Xing; Hu, Tao; Li, Juan; Song, Hao; Liu, Yanran; Wang, Peihan; Liu, Di; Yang, Jing; Holmes, Edward C.; Hughes, Alice C.; Bi, Yuhai; Shi, Weifeng. A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Current Biology. 2020, 30 (11): 2196–2203.e3. ISSN 0960-9822. doi:10.1016/j.cub.2020.05.023. 
  67. MacKenzie, John S.; Smith, David W. COVID-19: A novel zoonotic disease caused by a coronavirus from China: What we know and what we don't. Microbiology Australia. 2020, 41: 45. PMC 7086482可免费查阅. PMID 32226946. doi:10.1071/MA20013. Evidence from the sequence analyses clearly indicates that the reservoir host of the virus was a bat, probably a Chinese or Intermediate horseshoe bat, and it is probable that, like SARS-CoV, an intermediate host was the source of the outbreak. 
  68. Boni, Maciej F.; Lemey, Philippe; Jiang, Xiaowei; Lam, Tommy Tsan-Yuk; Perry, Blair W.; Castoe, Todd A.; Rambaut, Andrew; Robertson, David L. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nature Microbiology. 2020, 5 (11): 1408–1417. PMID 32724171. S2CID 220809302. doi:10.1038/s41564-020-0771-4可免费查阅. 
  69. 69.0 69.1 69.2 Wacharapluesadee S, Tan CW, Maneeorn P, Duengkae P, Zhu F, Joyjinda Y, et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nature Communications. February 2021, 12 (1): 972. PMC 7873279可免费查阅. PMID 33563978. doi:10.1038/s41467-021-21240-1可免费查阅. 
  70. 70.0 70.1 70.2 Hul V, Delaune D, Karlsson EA, Hassanin A, Tey PO, Baidaliuk A, et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. bioRxiv: 2021.01.26.428212. 26 January 2021. doi:10.1101/2021.01.26.428212 (英语). 
  71. Murakami, Shin; Kitamura, Tomoya; Suzuki, Jin; Sato, Ryouta; Aoi, Toshiki; Fujii, Marina; Matsugo, Hiromichi; Kamiki, Haruhiko; Ishida, Hiroho; Takenaka-Uema, Akiko; Shimojima, Masayuki; Horimoto, Taisuke. Detection and Characterization of Bat Sarbecovirus Phylogenetically Related to SARS-CoV-2, Japan. Emerging Infectious Diseases. 2020, 26 (12): 3025–3029. ISSN 1080-6040. doi:10.3201/eid2612.203386. 
  72. 72.0 72.1 Hu, Dan; Zhu, Changqiang; Ai, Lele; He, Ting; Wang, Yi; Ye, Fuqiang; Yang, Lu; Ding, Chenxi; Zhu, Xuhui; Lv, Ruicheng; Zhu, Jin; Hassan, Bachar; Feng, Youjun; Tan, Weilong; Wang, Changjun. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerging Microbes & Infections. 2018, 7 (1): 1–10. ISSN 2222-1751. doi:10.1038/s41426-018-0155-5. 
  73. 73.0 73.1 Lam, Tommy Tsan-Yuk; et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature. 2020, 583 (7815): 282–285. ISSN 0028-0836. doi:10.1038/s41586-020-2169-0. 
  74. Beltz, Lisa A. Bats and Human Health: Ebola, SARS, Rabies and Beyond. John Wiley & Sons. 2017: 155. ISBN 9781119150046. 
  75. Pattnaik, Priyabrata. Kyasanur forest disease: An epidemiological view in India. Reviews in Medical Virology. 2006, 16 (3): 151–165. PMID 16710839. S2CID 32814428. doi:10.1002/rmv.495. 
  76. Guo, Wen-Ping; Lin, Xian-Dan; Wang, Wen; Tian, Jun-Hua; Cong, Mei-Li; Zhang, Hai-Lin; Wang, Miao-Ruo; Zhou, Run-Hong; Wang, Jian-Bo; Li, Ming-Hui; Xu, Jianguo; Holmes, Edward C.; Zhang, Yong-Zhen. Phylogeny and Origins of Hantaviruses Harbored by Bats, Insectivores, and Rodents. PLOS Pathogens. 2013, 9 (2): e1003159. PMC 3567184可免费查阅. PMID 23408889. doi:10.1371/journal.ppat.1003159. 
  77. Mildenstein, T.; Tanshi, I.; Racey, P. A. Exploitation of bats for bushmeat and medicine. Bats in the Anthropocene: Conservation of Bats in a Changing World. Springer. 2016: 327. ISBN 978-3-319-25218-6. S2CID 130038936. doi:10.1007/978-3-319-25220-9_12. 
  78. Tuladhar-Douglas, Will. The Use of Bats as Medicine Among the Newars. Journal of Ethnobiology. 2008, 28: 69–91. ISSN 0278-0771. doi:10.2993/0278-0771(2008)28[69:TUOBAM]2.0.CO;2. 
  79. Riccucci, M. Bats as materia medica: An ethnomedical review and implications for conservation. Vespertillio. 2012, 16 (16): 249–270 [2021-06-11]. 
  80. Taxonomy=Rhinolophidae. IUCN. [2020-12-14].