反氫

本页使用了标题或全文手工转换,现处于台湾繁体模式
求聞百科,共筆求聞

Template:Infobox antimatter

一顆反氫原子由一個正子和一個反質子組成

反氫antihydrogen)是對應元素反物質:每顆氫原子是由一顆質子電子組成,而反氫則是由一顆反質子正電子組成。其化學符號多以「H」表示,即「H」上加一橫條,讀作「H-bar」。科學家希望研究反氫,來闡明為什麼在可觀測宇宙中,物質反物質多的問題,被稱為重子不對稱性問題。 [1]反氫是在粒子加速器中人工產生的。 1999年,NASA 估計每克反氫的製造成本為62.5兆美元 (相當於今天的97兆美元),使得它成為製造成本最高的物質。[2]這是由於每個實驗產生的反氫極低,並且使用粒子加速器機會成本高。

歷史

1932年,此前一直研究宇宙射線的卡爾·戴維·安德森了發現帶正電荷的電子:正電子

1955年,埃米利奧·塞格雷歐文·張伯倫通過使用粒子加速器「Bevatron」發現了反質子,即反氫的原子核。在此實驗中還發現了反中子

1995年,歐洲核子研究組織(CERN)和德國的研究小組發現在反質子周圍與正電子反應,產生反氫圈,次年一月公佈結果。

根據粒子物理學CPT定律,反氫的不少特性均與氫相同,包括質量磁矩及在量子狀態中的過渡頻率(即把雷射微波光束射在反氫原子上,會發出與氫相同顏色的光,例如:1s-2s的過渡頻率同樣為243 nm[3])。由於反物質的質量不會呈負數,因此在萬有引力方面,反氫也應與正氫相同。

當反氫原子與正物質接觸,它們會很快湮滅並化為伽馬射線及高能量π介子,這些π介子又很快會衰變為緲子微中子、正子及電子,並很快會消失。如果反氫原子處於真空環境,又不與正物質碰撞,它們理應永遠存在,不會湮滅消失。

自然界的環境不會出現反氫,因此需靠人們以粒子加速器來製造。1995年,歐洲核子研究組織(CERN)成功在瑞士日內瓦的研究所中,以射擊反質子來製造反氫原子,而這些反質子是在粒子加速器中的原子團中產生的。當一粒反質子接近氙原子核時,會產生正負電子各一粒,正電子給反質子抓獲時,便會產生反氫原子。由於每粒反質子能變為反氫原子的機會率約為10−19,因此以這個方法去大量生產反氫原子,成本定會極為昂貴。

近年,ATRAP及ATHENA兩個計劃正於CERN共同進行研究,他們把從放射性金屬中產生的正電子與困在彭寧離子阱中的反質子融合為反氫原子,每秒鐘可生產100顆,這個方法於2002年首度試驗,至2004年共生產了數十萬顆。

這些反氫原子由於溫度極高,約為攝氏數千度,因此撞向實驗器皿時湮滅的機會也極高。而下一個目標是要製造低溫的反氫,並處於接近絕對零度的水平,使之可由磁場來密封。然後可以雷射來準確量度其過渡頻率,如果其結果與正氫不同,縱使其差距小,也能證明它們的特性不完全相同,並能幫助解釋為何宇宙的物質以正物質為主,而非反物質。

2016年12月19日,《自然》雜誌登出CERN反氫雷射物理儀器Antihydrogen Laser Physics Apparatus︔縮寫作ALPHA)反質子減速器測得反氫中最低的兩個能階(1S與2S)之間的電子躍遷,其結果在實驗誤差內與一般的氫原子一致,吻合物質-反物質對稱性的CPT對稱性定律概念[3][4]

實驗歷史

粒子加速器在 1990年代偵測到熱的反氫。 2002年,ATHENA 研究過冷的反氫。 它是2010年由 CERN[5][6]的反氫雷射物理儀器(ALPHA)小組首先捕獲的, 然後測量了結構和其他重要特性。 [7]ALPHA、 AEGIS和 GBAR 計劃進一步冷卻和研究反氫原子。

特徵

粒子物理學的CPT定理預測反氫原子具有的特徵和正常的氫具有的許多特徵一樣;即質量磁矩和原子態躍遷頻率相同(請參見「原子光譜」)。[8]舉個例子,激發態的反氫原子會和激發態的普通氫原子發出一樣顏色的光。 反氫原子應該會吸引其它物質和反物質,其作用力應與普通氫原子所承受的力相同。[5]如果反物質具有負的重力質量,這將是不正確的,儘管在經驗上尚未得到證明,反氫有負重力質量的可能性很小(請參閱「 反物質的重力交互作用」)。[9]

當反氫接觸到正物質時,它們會迅速湮滅。 正電子會和電子反應並湮滅,放出伽瑪射線。而反質子,由反夸克組成,會和由夸克組成的質子或中子反應並湮滅, 生成高能的π介子,並衰變成緲子微中子正電子電子。 如果反氫原子存在於 真空的環境, 它們理論上可以永遠存在。

作為一種反元素,反氫預計會有和氫一樣的性質。[10]舉個例子,反氫在標準情況下會是一種無色氣體,會和反氧反應,生成反水 ,H2O

合成

第一個反氫於 1995 年由瓦爾特·厄萊爾特 的隊伍在 CERN[11]Charles Munger JrStanley J BrodskyIvan Schmidt Andrade提出的方法首次合成。[12]

LEAR中,從一個粒子加速器 發射的反質子會射到 原子簇[13]形成電子-正電子對。 反質子捕獲一個正電子,形成反氫原子的機率為 10−19,因此該方法不適合用於實際生產(如所計算的)。 [14][15][16]費米國立加速器實驗室 測量了一些不同的橫截面 ,[17]量子電動力學的預測一致。 [18]兩者均導致高能或高溫的反原子的反應,不適合進行詳細研究。

隨後,CERN建立了反質子減速器(AD),以支持朝著低能反氫的方向努力,以測試基本對稱性。反質子減速器將提供給幾個CERN組。CERN預計其設施將能夠每分鐘產生1000萬個反質子。 [19]

反氫的同位素與其他反原子

主要的反氫同位素
同位素 衰變
豐度 半衰期 (t1/2) 類型 產物
1H 人造[查證請求] 理論上穩定[查證請求],未有實驗測定
2D 人造[查證請求] 理論上穩定[查證請求],未有實驗測定

人們亦可利用同樣方法製造反氘D2H)、反氚T3H),或甚至是反氦He),只是其難度更高。在2011年4月29日出版的英國《自然》雜誌上刊登了成功合成反氦-4的消息,方法是將兩個接近光速的金原子核對撞,通過篩選共探測到18個反氦-4的信號。反氘、[20][21]反氦-3 (3He)[22][23]和反氦-4 (4He) 的原子核[24],以如此高的速度產生了它們的相應原子的合成,帶來了幾個技術障礙。

參看

參考文獻

  1. BBC News – Antimatter atoms are corralled even longer . Bbc.co.uk. Retrieved on 2011-06-08.
  2. Reaching for the stars: Scientists examine using antimatter and fusion to propel future spacecraft. NASA. 1999-04-12 [2010-06-11]. Antimatter is the most expensive substance on Earth 
  3. 3.0 3.1 Ahmadi, M; et al. Observation of the 1S–2S transition in trapped antihydrogen. Nature. 2016-12-19 [2016-12-21]. doi:10.1038/nature21040 (英語). 
  4. Castelvecchi, Davide. Ephemeral antimatter atoms pinned down in milestone laser test. Nature. 2016-12-19 [2016-12-20] (英語). 
  5. 5.0 5.1 Reich, Eugenie Samuel. Antimatter held for questioning. Nature. 2010, 468 (7322): 355. Bibcode:2010Natur.468..355R. PMID 21085144. doi:10.1038/468355a可免費查閱. 
  6. eiroforum.org – CERN: Antimatter in the trap , December 2011, accessed 2012-06-08
  7. Internal Structure of Antihydrogen probed for the first time. Physics World. 2012-03-07 [2020-12-31]. 
  8. Grossman, Lisa. The Coolest Antiprotons. Physical Review Focus. 2010-07-02, 26 (1) [2020-12-31]. 
  9. Antihydrogen trapped for a thousand seconds. Technology Review. 2011-05-02. 
  10. Palmer, Jason. Antihydrogen undergoes its first-ever measurement. 2012-03-14 [2020-12-31] –透過www.bbc.co.uk. 
  11. Freedman, David H. Antiatoms: Here Today . . .. Discover Magazine. 1997-01 [2021-01-02]. 
  12. Munger, Charles T. Production of relativistic antihydrogen atoms by pair production with positron capture. Physical Review D. 1994, 49 (7): 3228–3235. Bibcode:1994PhRvD..49.3228M. PMID 10017318. S2CID 12149672. doi:10.1103/physrevd.49.3228. 
  13. Baur, G.; Boero, G.; Brauksiepe, A.; Buzzo, A.; Eyrich, W.; Geyer, R.; Grzonka, D.; Hauffe, J.; Kilian, K.; LoVetere, M.; Macri, M.; Moosburger, M.; Nellen, R.; Oelert, W.; Passaggio, S.; Pozzo, A.; Röhrich, K.; Sachs, K.; Schepers, G.; Sefzick, T.; Simon, R.S.; Stratmann, R.; Stinzing, F.; Wolke, M. Production of Antihydrogen. Physics Letters B. 1996, 368 (3): 251ff [2021-01-02]. Bibcode:1996PhLB..368..251B. doi:10.1016/0370-2693(96)00005-6. 
  14. Bertulani, C.A.; Baur, G. Pair production with atomic shell capture in relativistic heavy ion collisions (PDF). Braz. J. Phys. 1988, 18: 559 [2021-01-02]. 
  15. Bertulani, Carlos A.; Baur, Gerhard. Electromagnetic processes in relativistic heavy ion collisions (PDF). Physics Reports. 1988, 163 (5–6): 299 [2021-01-02]. Bibcode:1988PhR...163..299B. doi:10.1016/0370-1573(88)90142-1. 
  16. Aste, Andreas; Hencken, Kai; Trautmann, Dirk; Baur, G. Electromagnetic Pair Production with Capture (PDF). Physical Review A. 1993, 50 (5): 3980–3983 [2021-01-02]. Bibcode:1994PhRvA..50.3980A. PMID 9911369. doi:10.1103/PhysRevA.50.3980. 
  17. Blanford, G.; Christian, D.C.; Gollwitzer, K.; Mandelkern, M.; Munger, C.T.; Schultz, J.; Zioulas, G. Observation of Atomic Antihydrogen. Physical Review Letters (Fermi National Accelerator Laboratory). 1997-12, 80 (14): 3037. Bibcode:1997APS..APR.C1009C. S2CID 58942287. doi:10.1103/PhysRevLett.80.3037. FERMILAB-Pub-97/398-E E862 ... p and H experiments 
  18. Bertulani, C.A.; Baur, G. Antihydrogen production and accuracy of the equivalent photon approximation. Physical Review D. 1998, 58 (3): 034005. Bibcode:1998PhRvD..58c4005B. S2CID 11764867. arXiv:hep-ph/9711273可免費查閱. doi:10.1103/PhysRevD.58.034005. 
  19. Madsen, N. Cold antihydrogen: a new frontier in fundamental physics. Philosophical Transactions of the Royal Society A. 2010, 368 (1924): 3671–82. Bibcode:2010RSPTA.368.3671M. PMID 20603376. doi:10.1098/rsta.2010.0026可免費查閱. 
  20. Massam, T; Muller, Th.; Righini, B.; Schneegans, M.; Zichichi, A. Experimental observation of antideuteron production. Il Nuovo Cimento. 1965, 39 (1): 10–14. Bibcode:1965NCimS..39...10M. S2CID 122952224. doi:10.1007/BF02814251. 
  21. Dorfan, D. E; Eades, J.; Lederman, L. M.; Lee, W.; Ting, C. C. Observation of Antideuterons. Phys. Rev. Lett. 1965-06, 14 (24): 1003–1006. Bibcode:1965PhRvL..14.1003D. doi:10.1103/PhysRevLett.14.1003. 
  22. Antipov, Y.M.; et al. Observation of antihelium3 (in Russian). Yadernaya Fizika. 1974, 12: 311. 
  23. Arsenescu, R.; et al. Antihelium-3 production in lead-lead collisions at 158 A GeV/c. New Journal of Physics. 2003, 5 (1): 1. Bibcode:2003NJPh....5....1A. doi:10.1088/1367-2630/5/1/301可免費查閱. 
  24. Agakishiev, H.; et al. Observation of the antimatter helium-4 nucleus. Nature. 2011, 473 (7347): 353–6. Bibcode:2011Natur.473..353S. PMID 21516103. S2CID 118484566. arXiv:1103.3312可免費查閱. doi:10.1038/nature10079. 

外部連結