夸克

这是特色条目,点此获取更多信息。
本页使用了标题或全文手工转换,现处于中国大陆简体模式
求闻百科,共笔求闻
夸克
图中有三个颜色球(代表夸克),每一对都有弹簧(代表胶子)连接着,而它们都在一个灰色旳圆圈内(代表质子)。球的颜色分别为红、绿及蓝,跟每个夸克的色荷一致。红色及蓝色球上标着“u”(代表上夸克),而绿色球则标着“d”(代表下夸克)。各夸克的颜色分配并不重要,重要的是所有三种颜色都在。
由二个上夸克及一个下夸克所构成的质子
组成基本粒子
费米子
第一代、第二代及第三代
基本相互作用电磁力重力
符号q
反粒子反夸克 (q)
理论默里·盖尔曼 (1964年)
乔治·茨威格 (1964年)
发现斯坦福线性加速器中心
(约1968年)
类型6种
电荷+23 e, −13 e
色荷
自旋12
CAS号12585-73-8  ✓

夸克(英语:quark)意译为层子[1],是一种基本粒子,也是构成物质的基本单元。夸克互相结合,形成一种复合粒子,叫强子,强子中最稳定的是质子中子,它们是构成原子核的单元[2]。由于一种叫“夸克禁闭”的现象,夸克不能够直接被观测到,或是被分离出来;只能够在强子里面找到夸克[3][4]。因为这个原因,人类对夸克的所知大都是来自对强子的观测。

夸克有六种“”,分别是[5]。上及下夸克的质量是所有夸克中最低的。较重的夸克会通过一个叫粒子衰变的过程,来迅速地变成上或下夸克。粒子衰变是一个从高质量态变成低质量态的过程。就是因为这个原因,上及下夸克一般来说很稳定,所以它们在宇宙中很常见,而奇、粲、顶及底则只能经由高能粒子的碰撞产生(例如宇宙射线粒子加速器)。

夸克有着多种不同的内在特性,包括电荷色荷自旋质量等。在标准模型中,夸克是唯一一种能经受全部四种基本相互作用的基本粒子,基本相互作用有时会被称为“基本力”(电磁相互作用力万有引力强相互作用力弱相互作用力)。夸克同时是现时已知唯一一种基本电荷整数的粒子。夸克每一种味都有一种对应的反粒子,叫反夸克,它跟夸克的不同之处,只在于它的一些特性跟夸克大小一样但正负不同

夸克模型分别由默里·盖尔曼乔治·茨威格于1964年独立地提出[6]。引入夸克这一概念,是为了能更好地整理各种强子,而当时并没有什么能证实夸克存在的物理证据,直到1968年SLAC开发出深度非弹性散射实验为止[7][8]。夸克的六种味已经全部被加速器实验所观测到;而于1995年在费米实验室被观测到的顶夸克,是最后发现的一种[6]

分类

参见:标准模型
标准模型中的粒子有六种是夸克(图中用紫色表示)。左边的三行中,每一行构成物质的一

标准模型是描述所有已知基本粒子的理论框架[9]。此模型包含六种的夸克(q):u)、d)、s)、c)、b)及t[5]。夸克的反粒子反夸克,在对应的夸克符号上加一横作为标记,例如u代表反上夸克。跟一般反物质一样,反夸克跟对应的夸克有着相同的质量、平均寿命自旋,但两者的电荷及其他的正负则相反[10]

夸克的自旋为12,因此根据自旋统计定理,它们是费米子。它们遵守泡利不相容原理,即两个相同的费米子,不能同时拥有相同的量子态。这点跟玻色子相反(拥有整数自旋的粒子),在相同的量子态上,相同的玻色子没有数量限制[11]。跟轻子不同的是,夸克拥有色荷,因此它们会参与强相互作用。因为这种夸克间吸引力的关系,而形成的复合粒子,叫做“强子”(见下文强相互作用与色荷部分)。

在强子中决定量子数的夸克叫“价夸克”;除了这些夸克,任何强子都可以含有无限量的(或“”)夸克、反夸克,及不影响其量子数的胶子[12]。强子分两种:带三个价夸克的重子,及带一个价夸克和一个反价夸克的介子[13]。最常见的重子是质子和中子,它们是构成原子核的基础材料[14]。我们已经知道有很多不同的强子(见重子列表介子列表),它们的不同点在于其所含的夸克,及这些内含物所赋予的性质。而含有更多价夸克的“奇异”强子,如四夸克粒子qqqq)及五夸克粒子qqqqq),目前仍在理论阶段[15],它们的存在仍未被证实[注 1][15][16]

基本费米子被分成三,每一代由两个轻子和两个夸克组成。第一代有上及下夸克,第二代有奇及粲夸克,而第三代则有顶及底夸克。过去所有搜寻第四代基本粒子的研究均以失败告终[17],又有有力的间接证据支持不会有超过三代[注 2][18]。代数较高的粒子,一般会有较大的质量及较低的稳定性,于是它们会通过弱相互作用衰变成代数较低的粒子。在自然中,只有第一代夸克(上及下)是常见的。较重的夸克只能通过高能碰撞来生成(例如宇宙射线),而且它们很快就会衰变;然而,科学家们相信大爆炸后,第一秒的最早部分会存有重夸克,那时宇宙处于温度及密度极高的状态(夸克时期)。重夸克的实验研究都在人工的环境下进行,例如粒子加速器[19]

同时拥有电荷、质量、色荷及味,夸克是唯一一种能经受现代物理全部四种相互作用的已知粒子,这四种作用为:电磁、重力、强相互作用及弱相互作用[14]。对于个别粒子的相互作用而言,除非是在极端的能量(普朗克能量)及距离尺度(普朗克距离)下,重力实在是小得微不足道。然而,由于现时仍没有成功的量子引力理论,所以标准模型并不描述重力。

关于六种夸克味更完整的概述,可见于下文中的列表

历史

默里·盖尔曼,摄于2007年的TED大会。盖尔曼与乔治·茨威格在1964年提出了夸克模型。

夸克模型于1964年由物理学家默里·盖尔曼[20]乔治·茨威格(George Zweig)[21][22]独立提出[6]。在这个提案前不久的1961年,盖尔曼提出了一种粒子分类系统,叫“八重道”——或技术上应叫特殊幺正群味对称[23]。以色列物理学家尤瓦勒·内埃曼(Yuval Ne'eman),在同年亦独立地开发出一套跟八重道相近的理论[24][25]

在夸克理论的初期,当时的“粒子园”除了其他各种粒子,还包括了许多强子。盖尔曼和茨威格假定它们不是基本粒子,而是由夸克和反夸克组成的。在他们的模型中,夸克有三种味,分别是,他们把电荷及自旋等性质都归因于这些味[20][21][22]。初时物理学界对于这份提案的意见不一。当时学界对于夸克的本质有所争论,一方认为夸克是物理实体,另一方则认为,它只是用来解释当时未明物理的抽象概念而已[26]

在一年之内,就有人提出了盖尔曼-茨威格模型的延伸方案。谢尔登·李·格拉肖詹姆斯·布约肯(James Bjorken)预测有第四种夸克存在,他们把它叫做“粲”。加上第四种夸克的原因有三:一、能更好地描述弱相互作用(导致夸克衰变的机制);二、夸克的数量会变得与当时已知的轻子数量一样;三、能产生一条质量方程,可以计算出已知介子的质量[27]

斯坦福线性加速器中心(SLAC)深度非弹性散射实验在1968年指出,质子含有比自己小得多的点状物,因此质子并非基本粒子[7][8][28]。物理学家当时并不愿意把这些物体视为夸克,反而叫它们做“部分子”(parton)——一个由理查德·费曼所创造的新词[29][30][31]:42随着更多的发现,在SLAC所观测到的粒子后来被鉴定为上及下夸克[32]:556。不过,“部分子”一词到现在还在使用,是重子构成物(夸克、反夸克和胶子)的总称。

奇夸克的存在由SLAC的散射实验间接证实:奇夸克不但是盖尔曼和茨威格三夸克模型的必要部分,而且还解释到1947年从宇宙射线中发现的Kπ强子[33]

在1971年的一份论文中,格拉肖、约翰·李尔普罗斯卢奇亚诺·马伊阿尼(Luciano Maiani)一起对当时尚未发现的粲夸克,提出更多它存在的理据[31]:44[34]。到1973年,小林诚益川敏英指出再加一对夸克,就能解释实验中观测到的CP破坏[注 3][35],于是夸克应有的味被提升到现时的六种。

粲夸克在1974年被两个研究小组几乎同时发现(见十一月革命)——一组在SLAC,由伯顿·里克特领导;而另一组则在布鲁克黑文国家实验室,由丁肇中领导。观测到的粲夸克在介子里面,与一个反粲夸克束缚(Bound state)在一起。两组分别为这种介子起了不同的名子:J及ψ;因此这种粒子的正式名子叫J/ψ介子。这个发现终于使物理学界相信夸克模型是正确的[31]

在之后的几年,有一些把夸克数量增至六个的提案。其中,以色列物理学家哈伊姆·哈拉里(Haim Harari)在1975年的论文[36]中,最早把加上的夸克命名为“”及“[37]:31-33

底夸克在1977年被利昂·莱德曼领导的费米实验室研究小组观测到[38][39]。这是一个代表顶夸克存在的有力征兆:没有顶夸克的话,底夸克就没有伴侣。然而一直都没有观测到顶夸克,直至1995年,终于被费米实验室CDF[40]小组[41]观测到[6]。它的质量比之前预料的要大得多[37]:144——几乎跟原子一样重[42]

命名

盖尔曼原本想用鸭的叫声来命名夸克[43]。开始时他并不太确定自己这个新词的实际拼法,直到他在詹姆斯·乔伊斯小说《芬尼根的守灵夜》里面找到“夸克”这个词:

盖尔曼在其著作《夸克与美洲豹》中,更详细地述说了夸克这个词的由来[46]

茨威格则用“埃斯”(Ace)来称呼他所理论化的粒子,但是在夸克模型被广泛接纳时,盖尔曼的用词就变得很有名[47]。很多中国物理学家则称夸克为“层子”,在台湾亦曾翻译“亏子”,但并不普遍使用。

夸克味的命名都是有原因的。上及下夸克被这样叫,是源于同位旋的上及下分量,而它们确实各自带有这样一个量[48]。奇夸克这个名字,是因为它们是在宇宙射线的奇异粒子中被发现的,发现奇异粒子的时候还没有夸克理论;它们被视为“奇异”,是因为它们的寿命不寻常地长[49]。跟布约肯一起提出粲夸克的格拉肖说过:“我们把它叫粲夸克,是因为在构建它的过程中,见到它为亚原子世界所带来的对称,我们被这种美迷住了,对成果感到很满意。”[50]至于“顶”和“底”这两个名字,哈拉里决定这样做,是因为“它们是上及下夸克逻辑上的伙伴”[36][37][49]。在过往,底及顶夸克有时会分别被叫作“美”及“真”夸克,但这两个名字现在已经很少人会用[51]:133

性质

电荷

参见:电荷

夸克的电荷值为分数——基本电荷的−13倍或+23倍,随味而定。上、粲及顶夸克(这三种叫“上型夸克”)的电荷为+23,而下、奇及底夸克(这三种叫“下型夸克”)的则为−13。反夸克与其所对应的夸克电荷相反;上型反夸克的电荷为−23,而下型反夸克的电荷则为+13。由于强子的电荷,为组成它的夸克的电荷总和,所以所有强子的电荷均为整数:三个夸克的组合(重子)、三个反夸克(反重子),或一个夸克配一个反夸克(介子),加起来电荷值都是整数[52]。例如,组成原子核的强子,中子和质子,其电荷分别为0及+1;中子由两个下夸克和一个上夸克组成,而质子则由两个上夸克和一个下夸克组成[14]

自旋

参见:自旋

自旋是基本粒子的一种内在特性,它的方向是一项重要的自由度。在视像化时,有时它会被视为一沿着自己中轴转动的物体(所以名叫“自旋”)。

自旋可以用矢量来代表,其长度可用约化普朗克常数ħ来量度。量度夸克时,在任何轴上量度自旋的矢量分量,结果皆为+ħ/2或−ħ/2;因此夸克是一种自旋12粒子[51]:80–90。沿某一轴(惯例上为z轴)上的旋转分量,一般用上箭头↑来代表+12,下箭头↓来代表−12,然后在后加上味的符号。例如,一自旋为+12的上夸克可被写成u↑[53]

弱相互作用

图为β衰变费曼图,时间箭头向上。CKM矩阵(详见下文)包含了β及其他夸克衰变的发生概率。

夸克只能通过弱相互作用,由一种味转变成另一种味,弱相互作用是粒子物理学的四种基本相互作用之一。任何上型的夸克(上、粲及顶夸克),都可以通过吸收或释放一W玻色子,而变成下型的夸克(下、奇及底夸克),反之亦然。这种变味机制正是导致β衰变这种放射过程的原因,在β衰变中,一中子(n)“分裂”成一质子(p)、一电子e)及一反电中微子νe)(见右图)。在β衰变发生时,中子(udd)内的一下夸克在释放一虚W玻色子后,随即衰变成一上夸克,于是中子就变成了质子(uud)。随后W玻色子衰变成一电子及一反电中微子[31]:307ff

  n   p + e + νe (β衰变,重子标记)
udd uud + e + νe (β衰变,夸克标记)

β衰变及其逆过程“逆β过程”在医学上都有常规性的应用,例如正电子发射计算机断层扫描。这两个过程在高能实验中也有应用,例如中微子探测

图为六种夸克间弱相互作用的强度。线的“深浅”由CKM矩阵的元决定。

尽管所有夸克的变味过程都一样,每一种夸克都偏向于变成跟自己同一代的另一夸克。所有味变的这种相对趋势,都是由一个数学表来描述,叫卡比博-小林-益川矩阵(CKM矩阵)。CKM矩阵内所有数值的大约大小如下[54]

其中Vij 代表一夸克味i 变成夸克味j(反之亦然)的可能性[注 4]

轻子(上图β衰变中在W玻色子右边的粒子)也有一个等效的弱相互作用矩阵,叫庞蒂科夫-牧-中川-坂田矩阵(PMNS矩阵)[55]。PMNS矩阵及CKM矩阵合起来能够描述所有味变,但两者间的关系并不明朗[56]

强相互作用与色荷

不论种类,强子的总色荷为零。

夸克有一种叫“色荷”的性质。色荷共分三种,可任意标示为“蓝”、“绿”及“红”[注 5]每一种色荷都有其对应的反色荷——“反蓝”、“反绿”及“反红”。每一个夸克都带一种色,而每一个反夸克则带一种反色。[57]

掌管夸克间吸引及排斥的系统,是由三种色的各种不同组合所负责,叫强相互作用,它是由一种叫胶子规范玻色子所传递的;下文中有关于胶子更详细的讨论。描述强相互作用的理论叫量子色动力学(QCD)。一个带某色荷的夸克,可以和一个带对应反色荷的反夸克,一起生成一束缚系统;三个(反)色荷各异的(反)夸克,也就是三种色每种一个,同样也可以束缚在一起。两个互相吸引的夸克会达至色中性:一夸克带色荷ξ,加上一个带色荷−ξ的反夸克,结合后色荷为零(或“白”色),成为一个介子。跟基本光学颜色叠加一样,把三个色荷互不相同的夸克或三个这样的反夸克组合在一起,就会同样地得到“白”的色荷,成为一个重子或反重子[58]

在现代粒子物理学中,联系粒子相互作用的,是一种叫规范对称空间对称群(见规范场论)。色荷SU(3)(一般简写成SU(3)c)是夸克色荷的规范对称,也是量子色动力学的定义对称[32]:part III}。物理学定律不受空间的方向(如x、y及z)所限,即使坐标轴旋转到一个新方向,定律依然不变,量子色动力学的物理也一样,不受三维色空间的方向影响,色空间的三个方向分别为蓝、红和绿。SU(3)c的色变与色空间的“旋转”相对应(数学上,色空间是复数空间)。每一种夸克味,f,下面都有三种小分类fBfGfR,对应三种夸克色蓝、绿和红[59],形成一个三重态:一股有三个分量的量子场,并且在变换时遵从SU(3)c的基本表示[60]。这个时候SU(3)c应是局部的,这个要求换句话说,就是容许变换随空间及时间而定,所以说这个局部表示决定了强相互作用的性质,尤其是有八种载力用胶子这一点[32]:part III[61]

质量

参见:质量

在提及夸克质量时,需要用到两个词:一个是“净夸克质量”,也就是夸克本身的质量;另一个是“组夸克质量”,也就是净夸克质量加上其周围胶子场的质量[62]。这两个质量的数值一般相差甚远。一个强子中的大部分的质量,都属于把夸克束缚起来的胶子,而不是夸克本身。尽管胶子的内在质量为零,它们拥有能量——更准确地,应为量子色动力学束缚能(QCBE)——就是它为强子提供了这么多的质量(见狭义相对论中的质量)。例如,一个质子的质量约为938 MeV/c2,其中三个价夸克大概只有11 MeV/c2;其余大部分质量都可以归咎于胶子的QCBE[63][64]

标准模型假定所有基本粒子的质量,都是来自希格斯机制,而这个机制跟希格斯玻色子有关系。顶夸克有着很大的质量,一个顶夸克大约跟一个金原子核一样重(~171 GeV/c2[63][65],而透过研究为什么顶夸克的质量那么大,物理学家希望能找到更多有关于夸克,及其他基本粒子的质量来源[66]

性质列表

下表总结了六种夸克的关键性质。每种夸克味都有自己的一组味量子数同位旋I3)、粲数C)、奇异数S)、顶数T)及底数B′)),它们代表着夸克系统及强子的一些特性。因为重子由三个夸克组成,所以所有夸克的重子数B)均为+13。反夸克的话,电荷(Q)及其他味量子数(BI3CSTB′)都跟夸克的差一个正负号。质量和总角动量J;相等于点粒子的自旋)不会因为反粒子而变号。

夸克按其特性分为三代,如下表所示:

夸克味的性质[63]
名称 符号 质量(MeV/c2* J B Q I3 C S T B′ 反粒子 反粒子符号
第一代 u 1.7 to 3.3 12 +13 +23 +12 0 0 0 0 反上 u
d 4.1 to 5.8 12 +13 13 12 0 0 0 0 反下 d
下一代
第二代 c 1270+70
−90
12 +13 +23 0 +1 0 0 0 反粲 c
s 101+29
−21
12 +13 13 0 0 −1 0 0 反奇 s
下一代
第三代 t 172000±900  ±1,300  12 +13 +23 0 0 0 +1 0 反顶 t
b 4190+180
−60
12 +13 13 0 0 0 0 −1 反底 b
J = 总角动量B = 重子数Q = 电荷I3 = 同位旋, C = 粲数S = 奇异数T = 顶数B′ = 底数
* 像4190+180
−60
这样的标记代表量测不确定度。以顶夸克为例,第一个不确定度是自然中的随机,第二个是系统的

注:每一味夸克都具有红、绿及蓝三种色的版本,但对上表所列的性质而言,三种版本都一样,故不列出。

相互作用中的夸克

参见:夸克禁闭胶子

就像量子色动力学所描述的,夸克间的强相互作用由胶子传递,胶子是无质量的矢量规范玻色子。每一个胶子带有一种色及一种反色。在粒子相互作用的标准框架下(它是通用表述摄动理论的一部分),胶子通过发射与吸收虚粒子,不断在夸克间进行交换。当胶子在夸克间转换时,两者的色荷都会改变;例如一红夸克在发射出一红-反绿胶子后,它就会变成绿夸克,又例如一绿夸克在吸收了一红-反绿胶子,它就会变成红夸克。因此,尽管夸克的色不断在变,但是它们间的强相互作用是维持着的[67][68]:45-47[69]:85

由于胶子带色荷,所以它们自己能发射及吸收其他胶子。因此导致“渐近自由”:当两个夸克间的距离愈来愈近时,它们之间的色动束缚力就愈来愈弱[69]:400ff。相反地,当夸克间的距离愈来愈远时,束缚力就愈来愈强。色场开始受到“应力”影响而不稳定,就像橡皮筋拉长时受应力影响而快断开一样,于是色场就会自发地生成许多合适色荷的胶子,来强化色场。当能量过了一个底限时,就会开始生成夸克和反夸克对。这些对与分离中的夸克束缚在一起,形成新的强子。这个现象叫“夸克禁闭”:夸克不能单独存在[68]:295–297[70]。夸克在高能碰撞中生成后,在能与其他夸克作出任何相互作用之前,就会发生强子化这个过程。唯一的例外是顶夸克,因为它会在强子化前先衰变[71]

海夸克

除影响量子数价夸克((qv)之外,强子也含有夸克-反夸克对(qq),这些对粒子叫“海夸克”(qs)。当强子色场的胶子分裂时,就会产生海夸克;以上过程的逆过程也会发生,当两个海夸克湮灭时,会产生一个胶子。于是胶子就会持续地分裂与生成,形成所谓的“海”[72]。海夸克比价夸克不稳定得多,它们一般会在强子内部互相湮灭。尽管如此,海夸克在某些情况下还是会强子化,形成重子或介子类的粒子[73]

夸克物质的其他相

夸克物质的性质描述相图。图中准确的细节,仍是进行中的研究课题[74][75]

在足够极端的条件下,夸克可能会脱离禁闭,成为自由粒子。在渐近自由的演变下,高温时的强相互作用变得较弱。最后,色禁闭会失效,形成一股超热等离子体,由自由移动的夸克与胶子组成。这种物质的理论相叫夸克-胶子浆[76]。需要达到这个相的确切条件,现时仍是未知,但这方面一直都有不少的推测及实验。温度需求的近期估计为(1.90±0.02)×1012 开尔文[77]。虽然夸克及胶子的完全自由态从未被实现(尽管欧洲核子研究组织在1980年代至90年代间尝试过许多次),但是在相对论性重离子对撞机的近期实验中,有证据指出像液体的夸克物质,能展示出“近乎完美”的流体运动[78]

夸克-胶子浆的特点是,相对于上及下夸克对的数量,重夸克对的数量大幅提升。宇宙学家们相信,在大爆炸后10−6秒之前(夸克时期),宇宙里充满着这种夸克-胶子浆,因为当时的温度实在太高,重子会不稳定[79]

当重子密度足够高时,且温度相对地低——大概可以跟中子星相比的条件——根据理论预测,夸克物质会退化成一弱作用夸克的费米液体。这种液体的特点是,它是由带色夸克的库珀对凝聚而成的,因此会对局部SU(3)c对称性造成破缺。由于库珀对含有色荷,所以这样的一种夸克物质相,叫色超导体,此时色荷能够在无色阻的情况下通过[80]

另见

注解

  1. 2000年代初,有几个研究小组声称,已证实了四夸克粒子与五夸克粒子的存在。尽管四夸克粒子的情况目前仍在争论中,但是所有五夸克候选粒子都已被证实不存在。
  2. 主要证据是基于Z0玻色子共振宽度,它限制了第四代中微子的质量,此时质量需要大于~45 GeV/c2。与其他三代的中微子相比,它们的质量不高于2 MeV/c2,可见两者形成非常大的对比。
  3. 在弱相互作用下的一个反应中,当左右被逆转(P对称),且粒子被换成反粒子(C对称)后,CP破坏会使这个反应的前后不一样。
  4. 从一夸克衰变至另一夸克的实际概率,是一个包含衰变夸克质量、衰变产物质量及对应CKM矩阵元等变数的复杂函数。该概率与CKM矩阵对应项(|Vij|2) 的平方成正比(但不相等)。
  5. 尽管名字中有颜色,色荷跟可见光的色谱并没有关系。

参考资料

  1. 現代漢語. : 246. ISBN 9787100091169. 
  2. Quark (subatomic particle). Encyclopædia Britannica. [2008-06-29]. 
  3. R. Nave. Confinement of Quarks. HyperPhysics. Georgia State University, Department of Physics and Astronomy. [2008-06-29]. 
  4. R. Nave. Bag Model of Quark Confinement. HyperPhysics. Georgia State University, Department of Physics and Astronomy. [2008-06-29]. 
  5. 5.0 5.1 R. Nave. Quarks. HyperPhysics. Georgia State University, Department of Physics and Astronomy. [2008-06-29]. 
  6. 6.0 6.1 6.2 6.3 B. Carithers, P. Grannis. Discovery of the Top Quark (PDF). Beam Line (SLAC). 1995, 25 (3): 4–16 [2008-09-23]. 
  7. 7.0 7.1 E.D. Bloom; et al. High-Energy Inelastic ep Scattering at 6° and 10°. Physical Review Letters. 1969, 23 (16): 930–934. Bibcode:1969PhRvL..23..930B. doi:10.1103/PhysRevLett.23.930. 
  8. 8.0 8.1 M. Breidenbach; et al. Observed Behavior of Highly Inelastic Electron–Proton Scattering. Physical Review Letters. 1969, 23 (16): 935–939. Bibcode:1969PhRvL..23..935B. doi:10.1103/PhysRevLett.23.935. 
  9. C. Amsler et al. (Particle Data Group). Higgs Bosons: Theory and Searches (PDF). Physics Letters B. 2008, 667 (1): 1–1340 [2011-07-25]. Bibcode:2008PhLB..667....1P. doi:10.1016/j.physletb.2008.07.018. 
  10. S.S.M. Wong. Introductory Nuclear Physics 2nd. Wiley Interscience. 1998: 30. ISBN 0-471-23973-9. 
  11. K.A. Peacock. The Quantum Revolution. Greenwood Publishing Group. 2008: 125. ISBN 031333448X. 
  12. B. Povh, C. Scholz, K. Rith, F. Zetsche. Particles and Nuclei. Springer. 2008: 98. ISBN 3540793674. 
  13. Section 6.1. in P.C.W. Davies. The Forces of Nature. Cambridge University Press. 1979. ISBN 052122523X. 
  14. 14.0 14.1 14.2 M. Munowitz. Knowing. Oxford University Press. 2005: 35. ISBN 0195167376. 
  15. 15.0 15.1 W.-M. Yao et al. (Particle Data Group). Review of Particle Physics: Pentaquark Update (PDF). Journal of Physics G. 2006, 33 (1): 1–1232 [2011-07-25]. Bibcode:2006JPhG...33....1Y. arXiv:astro-ph/0601168可免费查阅. doi:10.1088/0954-3899/33/1/001. 
  16. C. Amsler et al. (Particle Data Group). Review of Particle Physics: Pentaquarks (PDF). Physics Letters B. 2008, 667 (1): 1–1340 [2011-07-25]. Bibcode:2008PhLB..667....1P. doi:10.1016/j.physletb.2008.07.018. 
    C. Amsler et al. (Particle Data Group). Review of Particle Physics: New Charmonium-Like States (PDF). Physics Letters B. 2008, 667 (1): 1–1340 [2011-07-25]. Bibcode:2008PhLB..667....1P. doi:10.1016/j.physletb.2008.07.018. 
    E.V. Shuryak. The QCD Vacuum, Hadrons and Superdense Matter. World Scientific. 2004: 59. ISBN 9812385746. 
  17. C. Amsler et al. (Particle Data Group). Review of Particle Physics: b′ (4th Generation) Quarks, Searches for (PDF). Physics Letters B. 2008, 667 (1): 1–1340 [2011-07-25]. Bibcode:2008PhLB..667....1P. doi:10.1016/j.physletb.2008.07.018. 
    C. Amsler et al. (Particle Data Group). Review of Particle Physics: t′ (4th Generation) Quarks, Searches for (PDF). Physics Letters B. 2008, 667 (1): 1–1340 [2011-07-25]. Bibcode:2008PhLB..667....1P. doi:10.1016/j.physletb.2008.07.018. 
  18. D. Decamp. Determination of the number of light neutrino species. Physics Letters B. 1989, 231 (4): 519. Bibcode:1989PhLB..231..519D. doi:10.1016/0370-2693(89)90704-1. 
    A. Fisher. Searching for the Beginning of Time: Cosmic Connection. Popular Science. 1991, 238 (4): 70. 
    J.D. Barrow. The Singularity and Other Problems. The Origin of the Universe Reprint. Basic Books. 1997 [1994]. ISBN 978-0465053148. 
  19. D.H. Perkins. Particle Astrophysics. Oxford University Press. 2003: 4. ISBN 0198509529. 
  20. 20.0 20.1 M. Gell-Mann. A Schematic Model of Baryons and Mesons. Physics Letters. 1964, 8 (3): 214–215. Bibcode:1964PhL.....8..214G. doi:10.1016/S0031-9163(64)92001-3. 
  21. 21.0 21.1 G. Zweig. An SU(3) Model for Strong Interaction Symmetry and its Breaking (PDF). CERN Report No.8182/TH.401. 1964 [2011-07-26]. 
  22. 22.0 22.1 G. Zweig. An SU(3) Model for Strong Interaction Symmetry and its Breaking: II. CERN Report No.8419/TH.412. 1964 [2015-11-22]. 
  23. M. Gell-Mann. The Eightfold Way: A theory of strong interaction symmetry. M. Gell-Manm, Y. Ne'emann (编). The Eightfold Way. Westview Press. 2000: 11 [1964]. ISBN 0-7382-0299-1. 
    Original: M. Gell-Mann. The Eightfold Way: A theory of strong interaction symmetry. Synchroton Laboratory Report CTSL-20 (California Institute of Technology). 1961. 
  24. Y. Ne'emann. Derivation of strong interactions from gauge invariance. M. Gell-Manm, Y. Ne'emann (编). The Eightfold Way. Westview Press. 2000 [1964]. ISBN 0-7382-0299-1. 
    Original Y. Ne'emann. Derivation of strong interactions from gauge invariance. Nuclear Physics. 1961, 26: 222. Bibcode:1961NucPh..26..222N. doi:10.1016/0029-5582(61)90134-1. 
  25. R.C. Olby; G.N. Cantor. Companion to the History of Modern Science. Taylor & Francis. 1996: 673. ISBN 0-415-14578-3. 
  26. A. Pickering. Constructing Quarks. University of Chicago Press. 1984: 114–125. ISBN 0226667995. 
  27. B.J. Bjorken, S.L. Glashow. Elementary Particles and SU(4). Physics Letters. 1964, 11 (3): 255–257. Bibcode:1964PhL....11..255B. doi:10.1016/0031-9163(64)90433-0. 
  28. J.I. Friedman. The Road to the Nobel Prize. Hue University. [2017-06-13]. 
  29. R.P. Feynman. Very High-Energy Collisions of Hadrons. Physical Review Letters. 1969, 23 (24): 1415–1417. Bibcode:1969PhRvL..23.1415F. doi:10.1103/PhysRevLett.23.1415. 
  30. S. Kretzer; et al. CTEQ6 Parton Distributions with Heavy Quark Mass Effects. Physical Review D. 2004, 69 (11): 114005. Bibcode:2004PhRvD..69k4005K. arXiv:hep-ph/0307022可免费查阅. doi:10.1103/PhysRevD.69.114005. 
  31. 31.0 31.1 31.2 31.3 D.J. Griffiths. Introduction to Elementary Particles. John Wiley & Sons. 1987. ISBN 0-471-60386-4. 
  32. 32.0 32.1 32.2 M.E. Peskin, D.V. Schroeder. An introduction to quantum field theory. Addison–Wesley. 1995. ISBN 0-201-50397-2. 
  33. V.V. Ezhela. Particle physics. Springer. 1996: 2. ISBN 1563966425. 
  34. S.L. Glashow, J. Iliopoulos, L. Maiani. Weak Interactions with Lepton–Hadron Symmetry. Physical Review D. 1970, 2 (7): 1285–1292. Bibcode:1970PhRvD...2.1285G. doi:10.1103/PhysRevD.2.1285. 
  35. M. Kobayashi, T. Maskawa. CP-Violation in the Renormalizable Theory of Weak Interaction (PDF). Progress of Theoretical Physics. 1973, 49 (2): 652–657 [2015-11-22]. Bibcode:1973PThPh..49..652K. doi:10.1143/PTP.49.652. 
  36. 36.0 36.1 H. Harari. A new quark model for hadrons. Physics Letters B. 1975, 57B: 265. Bibcode:1975PhLB...57..265H. doi:10.1016/0370-2693(75)90072-6. 
  37. 37.0 37.1 37.2 K.W. Staley. The Evidence for the Top Quark. Cambridge University Press. 2004. ISBN 9780521827102. 
  38. S.W. Herb; et al. Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-Nucleus Collisions. Physical Review Letters. 1997, 39: 252. Bibcode:1977PhRvL..39..252H. doi:10.1103/PhysRevLett.39.252. 
  39. M. Bartusiak. A Positron named Priscilla. National Academies Press. 1994: 245. ISBN 0309048931. 
  40. F. Abe et al. (CDF Collaboration). Observation of Top Quark Production in pp Collisions with the Collider Detector at Fermilab. Physical Review Letters. 1995, 74: 2626–2631. Bibcode:1995PhRvL..74.2626A. PMID 10057978. doi:10.1103/PhysRevLett.74.2626. 
  41. S. Abachi et al. (DØ Collaboration). Search for High Mass Top Quark Production in pp Collisions at √s = 1.8 TeV. Physical Review Letters. 1995, 74: 2422–2426. Bibcode:1995PhRvL..74.2422A. doi:10.1103/PhysRevLett.74.2422. 
  42. New Precision Measurement of Top Quark Mass. Brookhaven National Laboratory News. [2008-09-24]. 
  43. J. Gribbin, M. Gribbin. Richard Feynman: A Life in Science. Penguin Books. 1997: 194. ISBN 0-452-27631-4. 
  44. 卡洛·罗韦利;译者:文铮 陶慧慧;. 七堂极简物理课. 企鹅图书. 2016: 39. ISBN 978-7-5357-8927-3. 
  45. J. Joyce. Finnegans Wake. Penguin Books. 1982: 383 [1939]. ISBN 0-14-00-6286-6. LCCN 59-0 – 000. 
  46. M. Gell-Mann. The Quark and the Jaguar: Adventures in the Simple and the Complex. Henry Holt and Co. 1995: 180. ISBN 978-0805072532. 
  47. J. Gleick. Genius: Richard Feynman and modern physics. Little Brown and Company. 1992: 390. ISBN 0-316-903167. 
  48. J.J. Sakurai. S.F Tuan , 编. Modern Quantum Mechanics Revised. Addison–Wesley. 1994: 376. ISBN 0-201-53929-2. 
  49. 49.0 49.1 D.H. Perkins. Introduction to high energy physics. Cambridge University Press. 2000: 8. ISBN 0521621968. 
  50. M. Riordan. The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. 1987: 210. ISBN 9780671504663. 
  51. 51.0 51.1 F. Close. The New Cosmic Onion. CRC Press. 2006. ISBN 1584887982. 
  52. G. Fraser. The New Physics for the Twenty-First Century. Cambridge University Press. 2006: 91. ISBN 0521816009. 
  53. D. Lincoln. Understanding the Universe. World Scientific. 2004: 116. ISBN 9812387056. 
  54. K. Nakamura; et al. Review of Particles Physics: The CKM Quark-Mixing Matrix (PDF). J. Phys. G. 2010, 37 (075021): 150 [2011-07-25]. 
  55. Z. Maki, M. Nakagawa, S. Sakata. Remarks on the Unified Model of Elementary Particles (PDF). Progress of Theoretical Physics. 1962, 28 (5): 870. Bibcode:1962PThPh..28..870M. doi:10.1143/PTP.28.870. 
  56. B.C. Chauhan, M. Picariello, J. Pulido, E. Torrente-Lujan. Quark–lepton complementarity, neutrino and standard model data predict θPMNS13 = +1°
    −2°
    . European Physical Journal. 2007, C50 (3): 573–578. Bibcode:2007EPJC...50..573C. arXiv:hep-ph/0605032可免费查阅. doi:10.1140/epjc/s10052-007-0212-z.
     
  57. R. Nave. The Color Force. HyperPhysics. Georgia State University, Department of Physics and Astronomy. [2009-04-26]. 
  58. B.A. Schumm. Deep Down Things. Johns Hopkins University Press. 2004: 131–132. ISBN 080187971X. OCLC 55229065. 
  59. V. Icke. The force of symmetry. Cambridge University Press. 1995: 216. ISBN 052145591X. 
  60. M.Y. Han. A story of light. World Scientific. 2004: 78. ISBN 9812560343. 
  61. C. Sutton. Quantum chromodynamics (physics). Encyclopædia Britannica Online. [2009-05-12]. 
  62. A. Watson. The Quantum Quark. Cambridge University Press. 2004: 285–286. ISBN 0521829070. 
  63. 63.0 63.1 63.2 K. Nakamura et al. (Particle Data Group). Review of Particle Physics: Quarks (PDF). Journal of Physics G. 2010, 37: 075021 [2011-07-26]. Bibcode:2010JPhG...37g5021N. doi:10.1088/0954-3899/37/7A/075021. 
  64. W. Weise, A.M. Green. Quarks and Nuclei. World Scientific. 1984: 65–66. ISBN 9971966611. 
  65. D. McMahon. Quantum Field Theory Demystified. McGraw–Hill. 2008: 17. ISBN 0071543821. 
  66. S.G. Roth. Precision electroweak physics at electron–positron colliders. Springer. 2007: VI. ISBN 3540351647. 
  67. R.P. Feynman. QED: The Strange Theory of Light and Matter 1st. Princeton University Press. 1985: 136–137. ISBN 0-691-08388-6. 
  68. 68.0 68.1 M. Veltman. Facts and Mysteries in Elementary Particle Physics. World Scientific. 2003. ISBN 981238149X. 
  69. 69.0 69.1 F. Wilczek, B. Devine. Fantastic Realities. World Scientific. 2006. ISBN 981256649X. 
  70. T. Yulsman. Origin. CRC Press. 2002: 55. ISBN 075030765X. 
  71. F. Garberson. Top Quark Mass and Cross Section Results from the Tevatron. 2008. arXiv:0808.0273可免费查阅 [hep-ex]. 
  72. J. Steinberger. Learning about Particles. Springer. 2005: 130. ISBN 3540213295. 
  73. C.-Y. Wong. Introduction to High-energy Heavy-ion Collisions. World Scientific. 1994: 149. ISBN 9810202636. 
  74. 74.0 74.1 74.2 S.B. Rüester, V. Werth, M. Buballa, I.A. Shovkovy, D.H. Rischke. The phase diagram of neutral quark matter: Self-consistent treatment of quark masses. Physical Review D. 2005, 72: 034003. Bibcode:2005PhRvD..72c4004R. arXiv:hep-ph/0503184可免费查阅. doi:10.1103/PhysRevD.72.034004. 
  75. 75.0 75.1 75.2 M.G. Alford, K. Rajagopal, T. Schaefer, A. Schmitt. Color superconductivity in dense quark matter. Reviews of Modern Physics. 2008, 80: 1455–1515. Bibcode:2008RvMP...80.1455A. arXiv:0709.4635可免费查阅. doi:10.1103/RevModPhys.80.1455. 
  76. S. Mrowczynski. Quark–Gluon Plasma. Acta Physica Polonica B. 1998, 29: 3711. Bibcode:1998AcPPB..29.3711M. arXiv:nucl-th/9905005可免费查阅. 
  77. Z. Fodor, S.D. Katz. Critical point of QCD at finite T and μ, lattice results for physical quark masses. Journal of High Energy Physics. 2004, 2004: 50. Bibcode:2004JHEP...04..050F. arXiv:hep-lat/0402006可免费查阅. doi:10.1088/1126-6708/2004/04/050. 
  78. RHIC Scientists Serve Up "Perfect" Liquid. Brookhaven National Laboratory News. 2005 [2009-05-22]. 
  79. T. Yulsman. Origins: The Quest for Our Cosmic Roots. CRC Press. 2002: 75. ISBN 075030765X. 
  80. A. Sedrakian, J.W. Clark, M.G. Alford. Pairing in fermionic systems. World Scientific. 2007: 2–3. ISBN 9812569073. 

外部链接