橢圓曲線

出自求聞百科
橢圓曲線列表。圖中所示的區域為[−3,3]2 (當(a, b) = (0, 0)時函數不光滑,因此不是橢圓曲線。)

數學上,橢圓曲線(英語:Elliptic curve,縮寫為EC)為一平面代數曲線,由如下形式的方程定義

且滿足其是無奇點的;亦即,其圖形沒有尖點自相交。(當係數域特徵為2或3時,上面的方程不能涵蓋所有非奇異的三次曲線;見下面的#一般域上的橢圓曲線。)

正式地,橢圓曲線是光滑的射影的虧格為1的代數曲線,其上有一個特定的點O。橢圓曲線是阿貝爾簇 – 也就是說,它有代數上定義的乘法,並且對該乘法形成阿貝爾群 – 其中 O即為單位元。

,其中P為任一沒有重根的三次或四次多項式,然後可得到一虧格1的無奇點平面曲線,其通常亦被稱為橢圓曲線。更一般化地,一虧格1的代數曲線,如兩個三維二次曲面相交,即稱為橢圓曲線。

運用橢圓函數理論,我們可以證明定義在複數上的橢圓曲線對應於環面復射影平面內的嵌入。環面也是一個阿貝爾群,事實上,這個對應也是一個群同構

實數域上的橢圓曲線

曲線y2 = x3xy2 = x3x + 1的圖像

儘管橢圓曲線的正式定義需要一定的代數幾何背景,在實數上的橢圓曲線的一些特徵可以使用入門級別的代數幾何來描繪。

在這種情況下,橢圓曲線是由下列方程定義的平面曲線

其中ab為實數。這類方程被稱為魏爾斯特拉斯方程

橢圓曲線的定義也要求曲線是非奇異的。幾何上來說,這意味着圖像裡面沒有尖點自相交或孤立點。代數上來說,這成立當且僅當判別式

不等於0。(儘管這裡的因子−16與曲線是否是非奇異的無關,這樣定義判別式在對橢圓曲線進行更深入的研究時有用。)

非奇異橢圓曲線的(實)圖像在判別式為正的時候有兩個連通分量,在判別式為負時則有一個連通分量。例如,在本小節的圖像中,第一個曲線的判別式為64,而第二個曲線的判別式為−368。

定義無窮遠點0為橢圓曲線E上的一點。定義 + 運算子:取E上的兩點P,Q,若兩者相異,P + Q表示穿過PQ的弦和橢圓曲線相交的第三點,再經x軸反射的鏡像點;若兩者是同一點,P+P=2P表示以P為切點和橢圓曲線相交的點再經x軸反射的鏡像點。若P和Q的弦與y軸平行,P+Q=0(無限遠點)。+定義了一個E上的交換群,這個群以0為單位元。

特別地,所有有理點組成了E的子群。

上面的群可以用代數方式定義。給定域(其中的特徵值非2或者3)上的曲線,及非無窮遠點。先假設,設(因是域,有定義)。定義

因為共線,令該直線的方程為。直線與曲線相交,有:

是兩線的交點,即方程的解。有:

替換係數後可得:

  • ,其值為:

複數域上的橢圓曲線

有理數域上的橢圓曲線

一般域上的橢圓曲線

橢圓曲線可以被定義在任意 K上;橢圓曲線的正式定義是K上的虧格為1的非奇異射影代數曲線,並具有一個定義在K特殊的點。

如果K特徵不等於2或3,那麼K上每個橢圓曲線都能寫成如下形式

其中pqK中的元素,使得右手邊的多項式x3pxq沒有二重根。如果特徵等於2或3,那麼需要保留更多項:在特徵為3的情況下,最一般的方程具有如下形式

這裡常數b2, b4, b6可以任取,但需滿足使得右手邊的多項式無重根(寫成這個形式有歷史原因)。在特徵為2的情況下,即使是這種形式也不夠,其最一般的方程為

需滿足所定義的簇是非奇異的。

橢圓曲線的其他表示

應用

參考文獻

  • I. Blake; G. Seroussi, N. Smart, N.J. Hitchin. Elliptic Curves in Cryptography. Cambridge Univ. Press. 2000. ISBN 978-0-521-65374-9. 
  • Richard Crandall; Carl Pomerance. Chapter 7: Elliptic Curve Arithmetic. Prime Numbers: A Computational Perspective 1st edition. Springer. 2001: 285–352. ISBN 978-0-387-94777-8. 
  • John Cremona. Alogorithms for Modular Elliptic Curves. Cambridge Univ. Press. 1992. 
  • Dale Husemöller. Elliptic Curves 2nd edition. Springer. 2004. 
  • Kenneth Ireland; Michael Rosen. Chapters 18 and 19. A Classical Introduction to Modern Number Theory 2nd edition. Springer. 1990. 
  • Anthony Knapp. Elliptic Curves. Math Notes 40, Princeton Univ. Press. 1992. 
  • Neal Koblitz. Introduction to Elliptic Curves and Modular Forms. Springer. 1984. 
  • Neal Koblitz. Chapter 6. A Course in Number Theory and Cryptography 2nd edition. Springer. 1994. ISBN 978-0-387-94293-3. 
  • Serge Lang. Elliptic Curves: Diophantine Analysis. Springer. 1978. 
  • Joseph H. Silverman. The Arithmetic of Elliptic Curves. Springer. 1986. 
  • Joseph H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. Springer. 1994. 
  • Joseph H. Silverman; John Tate. Rational Points on Elliptic Curves. Springer. 1992. 
  • Lawrence Washington. Elliptic Curves: Number Theory and Cryptography. Chapman & Hall/CRC. 2003. ISBN 978-1-58488-365-4. 

外部連結