超线程

本页使用了标题或全文手工转换,现处于中国大陆简体模式
求闻百科,共笔求闻

超执行绪HT, Hyper-Threading)[1]英特尔研发的一种技术,于2002年发布。超执行绪技术原先只应用于Xeon 处理器中,当时称为“Super-Threading”。之后陆续应用在Pentium 4 HT中。早期代号为Jackson。

通过此技术,英特尔实现在一个实体CPU中,提供两个逻辑线程。之后的Pentium D纵使不支持超执行绪技术,但就集成了两个实体核心,所以仍会见到两个线程。超执行绪的未来发展,是提升处理器的逻辑线程。英特尔于2016年发布的Core i7-6950X便是将10核心的处理器,加上超执行绪技术,使之成为20个逻辑线程的产品。

英特尔表示,超执行绪技术让Pentium 4 HT处理器增加5%的裸晶面积,就可以换来15%~30%的性能提升。但实际上,在某些程序或未对多执行绪编译的程序而言,超执行绪反而会降低性能。除此之外,超执行绪技术亦要操作系统的配合,普通支持多处理器技术的系统亦未必能充分发挥该技术。例如Windows 2000,英特尔并不鼓励用户在此系统中利用超执行绪。原先不支持多核心的Windows XP Home Edition却支持超执行绪技术。

运作方式

每个单位时间内,一个单执行管线的CPU只能处理一个执行绪操作系统:thread),以这样的单位进行,如果想要在一单位时间内处理超过一个执行绪是不可能的,除非是有两个CPU的实体单元。双核心技术是将两个一样的CPU放置于一个封装内(或直接将两个CPU做成一个芯片),而英特尔的HT技术是在CPU内部仅复制必要的资源、让两个执行绪可同时执行;在一单位时间内处理两个执行绪的工作,模拟实体双核心、双执行绪运作。

Intel自Pentium开始引入超纯量乱序执行、大量的寄存器寄存器重命名、多指令解码器预测执行等特性;这些特性的原理是让CPU拥有大量资源,并可以预先执行及平行执行指令,以增加指令执行效率,可是在现实中这些资源经常闲置;为了有效利用这些资源,就干脆再增加一些资源来执行第二个执行绪,让这些闲置资源可执行另一个执行绪,而且CPU只要增加少数资源就可以模拟成两个执行绪运作。

P4处理器需多加一个Logical CPU Pointer(逻辑处理单元)。因此P4 HT的die的面积比以往的P4增大了5%。而其余部分如ALU(整数运算单元)、FPU(浮点运算单元)、L2 Cache(二级缓存)并未增加,且是共享的。

使用HT技术的CPU

编号SL6WK支持HT的P4 3.0G
虚拟的2个CPU在工作管理员中显示出都在运转

Pentium 4 CPU中,Northwood及其之后推出的版本内建超执行绪技术;而双核心的Pentium D中也只有EE版提供HT技术。英特尔的Core 2处理器则没有HT技术。[2]

而在2008年推出的Intel Core i7处理器又支持HT技术,在Nehalem微架构中,Hyper-Threading大举卷土重来。Intel的Hyper-Threading(又称同步多线程)是善用执行绪平行性的方法,让单一核心在应用软件层能执行两个逻辑线程。超线程技术在部分型号Intel Core i3/i5/i7/i9处理器中可用。从Kaby Lake Pentium开始,定位低阶的Pentium(部分型号)也支持超执行绪技术。

顾虑

把执行管线的状态,想像成流水线,资源A→资源B→资源C,来了两条资料要计算, 一条需要消耗A的100%→B的50%→C的50%,另一条一样需要消耗A的100%→B的50%→C的50%, 一条单纯的(无HT)的执行管线的资源A需要先运用100%性能把第一条运算完才能再运算下一条,但后面的资源B跟C却都有50%性能的浪费; 如果把执行管线的资源A,变成两个,资源B跟C依然只有一个, 那这条管线就可以变成“两个资源A同时消耗100%性能运算两条资料,到了资源B跟C阶段时,两条资料再各自消耗50%的性能”, 即达成“不必增加一条完整的执行管线,却能在一样时间运算两条执行绪”

但实际应用时,执行管线不会都是收到这么完美的需运算资料, 可能会是需消耗“A的10%→B的70%→C的70%”+“A的30%→B的50%→C的70%”+......等多种不同性能需求的需运算资料, 依照文件的统计数字,整体能够提升的性能约为5~15%左右,且万一发生资源互抢的情形时,整体性能反而会下降。 (以上是非常简略地描述大略情形,实际的超执行绪架构从P4时代至i系列6代,每一代都有所进化)

要令电脑支持超执行绪技术,通常需操作系统和硬体的配合。芯片组需要支持具有HT技术之处理器。为此,当时的Intel推出了新的芯片组,i865PE和i875P。要充分发挥超执行绪的性能,用户要使用Windows 2000之后的操作系统,而Windows XP家用版亦支持超执行绪技术。除了微软的Windows外,Linux kernel 2.4.x亦开始支持该技术。软件方面,通常优化多执行绪的程序都可以支持到。早期,游戏软件的支持是比较少。但随着多核心技术的普及,愈来愈多游戏软件支持多执行绪的处理器。[3]

示例:获取物理核心数与逻辑核心数

Windows API的GetLogicalProcessorInformation可获取当前计算机的物理核心数逻辑核心数:

DWORD GetProcessorCoreCount(DWORD &PhysicalProcessorCoreCount,DWORD &LogicalProcessorCoreCount )
{
	typedef BOOL(WINAPI *LPFN_GLPI)(
		PSYSTEM_LOGICAL_PROCESSOR_INFORMATION,
		PDWORD);

	LPFN_GLPI glpi = (LPFN_GLPI)GetProcAddress(GetModuleHandle(TEXT("kernel32")), "GetLogicalProcessorInformation");

	if (NULL == glpi)
		return 0;

	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION buffer = NULL;
	DWORD returnLength = 0;
	 PhysicalProcessorCoreCount = 0;
	 LogicalProcessorCoreCount = 0;
	while (true)
	{
		DWORD rc = glpi(buffer, &returnLength);

		if (FALSE == rc)
		{
			if (GetLastError() == ERROR_INSUFFICIENT_BUFFER)
			{
				if (buffer)
					free(buffer);

				buffer = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION)malloc(
					returnLength);

				if (NULL == buffer)
					return 0;
			}
			else
			{
				return 0;
			}
		}
		else
		{
			break;
		}
	}

	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION ptr = buffer;

	DWORD byteOffset = 0;
	while (byteOffset + sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION) <= returnLength)
	{
		switch (ptr->Relationship)
		{
		case RelationProcessorCore:
		{
			++PhysicalProcessorCoreCount;

			// count the logical processor, which is equal the count of digital 1's of ptr->ProcessorMask
			ULONG_PTR   ProcessorMask = ptr->ProcessorMask;
			while (ProcessorMask != 0)
			{
				ProcessorMask &= ProcessorMask - 1;
				LogicalProcessorCoreCount++;
			}
			break;
		}
		default:
			break;
		}
		byteOffset += sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION);
		++ptr;
	}
	free(buffer);
	return -1;
}

上述程序码在32位编译时最多能枚举32个逻辑核心,在64位编译时最多枚举64个逻辑核心。如果超过64,应该使用 processor group.

另见

注脚

外部链接