淤泥

求闻百科,共笔求闻

淤泥Silt),又称沉泥粉土,是泥土的基本组成成分之一。地质学中,淤泥是介于沙土黏土之间,长约2到62微米、直径4到9微米的一种颗粒状物料,主要由石英长石这两种矿物组成[1]。淤泥可能以土壤的成分或悬浊水体内的沉积物两种形式出现。当河道泛滥,又或被山崩时的泥石流带动,淤泥会在流动时随同水体在沿途沉积成为土壤。由于淤泥的比表面积属中度,非黏粘,有好像塑胶那样带弹性。当完全干燥时,淤泥会变回粉尘般的幼细,但潮湿后立即又变回黏滑。在手持的放大镜下,淤泥清晰可见,往往带有尖锐的外表。当以牙齿咬或以舌头触摸时,这种棱角亦能感觉到,而这亦是分辨水中的淤泥或黏土的一种方法。

来源

淤泥是通过对其原石施以各种物理过程而产生。这些物理过程能够通过利用原石内沙粒大小的石英晶体中的缺陷,将这些石英沙粒再细分[2]。这些物理过程包括有:岩石表岩屑风化作用[3]霜冻作用[4]卤虫成形术[5]。当中主要的过程是岩石在被水体运输时造成的磨损作用,例如:河流粉碎风成磨损冰川研磨[6]。在半干旱环境[7]中,产生了大量的淤泥。干燥后的淤泥又名粉砂,特别是由冰川作用形成的淤泥。矿物学上,淤泥的主要成分是石英长石。主要由淤泥组成的沉积岩被称为粉砂岩。强烈地震造成的液化是悬浮在水中的淤泥,水流动力从地下开始向上推。

粒径大小的条件

巫登–温特瓦分级(Udden–Wentworth scale),淤泥的粒径属于粉砂级的3.9至62.5 µm之间,比黏土大,但比沙粒小。国际标准化组织ISO 14688将淤泥的粒径定为2 µm-6 µm 到 20 µm-63 µm,然后再分为幼粒、中等和粗粒三等。实际上,淤泥在化学上的成分与黏土完全不同;此外淤泥的粒径在各个方向都大致相同,这一点亦是与黏土不同。再者,淤泥的尺寸往往重叠,即有多种不同粒径的粉砂混合在一起。反而黏土由通过静电力保持在一起的薄板状颗粒形成,因此具有内聚力;相反淤泥并没有这种内聚力。根据美国农业部USDA)的土壤质地分类系统Soil Texture Classification system)沙土和淤泥以0.05 mm的颗粒为分野[8]。这套由美国农业部开发的系统后来亦为联合国粮食及农业组织FAO)所采纳。

环境影响

位于德国艾肖尔斯特的淤泥湖。

文化象征

尼罗河河岸上的黑色淤泥在古埃及重生的象征,往往与埃及诸神之一的阿努比斯(Anubis)相关 [12]

参考文献

  1. Assallay, A.M.; Rogers, C.D.F.; Smalley, I.J.; Jefferson, I. Silt: 2-62um,9-4phi.. Earth-Science Reviews. 1998, 45: 61–88. 
  2. Moss, A J; Green, P. Sand and silt grains: Predetermination of their formation and properties by microfractures in quartz. Australian Journal of Earth Sciences. 1975, 22 (4): 485–495. Bibcode:1975AuJES..22..485M. doi:10.1080/00167617508728913. 
  3. Nahon, D; Trompette, R. Origin of siltstones:glacial grinding versus weathering. Sedimentology. 1982, 29: 25–35. Bibcode:1982Sedim..29...25N. doi:10.1111/j.1365-3091.1982.tb01706.x. 
  4. Lautridou, J P; Ozouf, J C. Experimental frost shattering: 15 years of research at the Centre de Geomorphologie du CNRS. Progress in Physical Geography. 1982, 6 (2): 215–232. doi:10.1177/030913338200600202. 
  5. Goudie, A S; Viles, H A. The nature and pattern of debris liberated by salt weathering: a laboratory study. Earth Surface Processes and Landforms. 1995, 9: 95–98. Bibcode:1984ESPL....9...95G. doi:10.1002/esp.3290090112. 
  6. Wright, J S; Smith, B J; Whalley W B. Mechanisms of loess-sized quartz silt production and their relative effectiveness: laboratory simulations. Geomorphology. 1998, 45: 15–34. Bibcode:1998Geomo..23...15W. doi:10.1016/S0169-555X(97)00084-6. 
  7. Haberlah, D. A call for Australian loess. AREA. 2007, 39 (2): 224–229. doi:10.1111/j.1475-4762.2007.00730.x. 
  8. Particle Size (618.43). National Soil Survey Handbook Part 618 (42-55) Soil Properties and Qualities. United States Department of Agriculture - Natural Resource Conservation Service. [2006-05-31]. 
  9. Mississippi River. USGS Biological Resources. [2006-03-08]. 
  10. Bangladesh fights for survival against climate change. [October 22, 2009]. 
  11. Leedy, Daniel L.; Franklin, Thomas M.; Maestro, Robert M. Planning for Urban Fishing and Waterfront Recreation. U.S. Department of the Interior, Fish and Wildlife Service, Eastern Energy and Land Use Team. 1981 (英语). 
  12. Hart 1986,第22页;Freeman 1997,第91页.

参看

外部链接