锕:修订间差异

求闻百科,共笔求闻
添加的内容 删除的内容
(我来啦, replaced: 員 → 员, 內 → 内 (7), 貴 → 贵 (2), 連結 → 链接, 參考 → 参考, 國 → 国 (4), 開 → 开, 學 → 学 (25), 參 → 参, 會 → 会 (22), 長 → 长, 與 → 与 (19), 礦 → 矿 (10), 間 → 间 (6), 導 → 导, 語 → 语, 專業 → 专业, 無 → 无 (6), 盡 → 尽, 構 → 构 (5), 關 → 关 (3), 檢 → 检, 將 → 将 (6), 調 → 调, 應 → 应 (25), 來 → 来 (10), 喬 → 乔, 對 → 对 (10), 動 → 动, 爾 → 尔 (10), 發 → 发 (14), 門 → 门, 願 → 愿, 極 → 极 (2), 樣 → 样 (5), 號 → 号 (3), 體 → 体 (18), 類 → 类 (2), 線 → 线 (7), 簡 → 简, 稱 → 称 (2), 為 → 为 (27), 於 → 于 (24), 亞 → 亚, 種 → 种 (11), 數 → 数 (12), 據 → 据 (3), 屬 → 属 (11), 術 → 术,…)
标签消歧义链接
(noteTA跳过, replaced: 殼 → 壳 (2), 裡 → 里, 適 → 适 (3), 擾 → 扰, 靜 → 静 (2))
第108行: 第108行:


== 历史 ==
== 历史 ==
[[法国]]化学家[[安德烈-路易·德贝尔恩]](André-Louis Debierne)在1899年宣布发现新元素。在[[玛莉·居礼]]和[[皮埃尔·居礼]]从[[瀝青鈾矿]]中分离出[[鐳]]之后,德贝尔恩接著从殘留物中再分离出这一新元素。他认为该元素与[[鈦]]和[[釷]]相似,并将其命名为“actinium”。<ref>{{cite journal |title = Sur un nouvelle matière radio-active |first = André-Louis |last = Debierne |journal = Comptes rendus |volume = 129 |pages = 593–595 |year = 1899 |url = http://gallica.bnf.fr/ark:/12148/bpt6k3085b/f593.table |accessdate = 2013-12-16 |||}}</ref><ref>{{cite journal |title = Sur un nouvelle matière radio-actif – l'actinium |first = André-Louis |last = Debierne |journal = Comptes rendus |volume = 130 |pages = 906–908 |year = 1900–1901 |url = http://gallica.bnf.fr/ark:/12148/bpt6k3086n/f906.table |accessdate = 2013-12-16 |||}}</ref>[[德国]]化学家[[弗德里希·奥斯卡·吉塞尔]](Friedrich Oskar Giesel)则在1902年独立发现了錒元素。<ref>{{cite journal |title = Ueber Radium und radioactive Stoffe |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 35 |issue = 3 |pages = 3608–3611 |year = 1902 |doi = 10.1002/cber.190203503187}}</ref>他认为錒与[[鑭]]相似,并在1904年将其命名为“emanium”。<ref>{{cite journal |title = Ueber den Emanationskörper (Emanium) |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 37 |issue = 2 |pages = 1696–1699 |year = 1904 |doi = 10.1002/cber.19040370280}}</ref>科学家在比较德贝尔恩所得出的半衰期数据后,<ref>{{cite journal |title = Sur l'actinium |first = André-Louis |last = Debierne |journal = Comptes rendus |volume = 139 |pages = 538–540 |year = 1904}}</ref>決定依最早发现者的意愿把该元素正式定名为“actinium”。<ref>{{cite journal |title = Ueber Emanium |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 37 |issue = 2 |pages = 1696–1699 |year = 1904 |doi = 10.1002/cber.19040370280}}</ref><ref>{{cite journal |title = Ueber Emanium |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 38 |issue = 1 |pages = 775–778 |year = 1905 |doi = 10.1002/cber.190503801130}}</ref>
[[法国]]化学家[[安德烈-路易·德贝尔恩]](André-Louis Debierne)在1899年宣布发现新元素。在[[玛莉·居礼]]和[[皮埃尔·居礼]]从[[瀝青鈾矿]]中分离出[[鐳]]之后,德贝尔恩接著从殘留物中再分离出这一新元素。他认为该元素与[[鈦]]和[[釷]]相似,并将其命名为“actinium”。<ref>{{cite journal |title = Sur un nouvelle matière radio-active |first = André-Louis |last = Debierne |journal = Comptes rendus |volume = 129 |pages = 593–595 |year = 1899 |url = http://gallica.bnf.fr/ark:/12148/bpt6k3085b/f593.table |accessdate = 2013-12-16 |||}}</ref><ref>{{cite journal |title = Sur un nouvelle matière radio-actif – l'actinium |first = André-Louis |last = Debierne |journal = Comptes rendus |volume = 130 |pages = 906–908 |year = 1900–1901 |url = http://gallica.bnf.fr/ark:/12148/bpt6k3086n/f906.table |accessdate = 2013-12-16 |||}}</ref>[[德国]]化学家[[弗德里希·奥斯卡·吉塞尔]](Friedrich Oskar Giesel)则在1902年独立发现了錒元素。<ref>{{cite journal |title = Ueber Radium und radioactive Stoffe |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 35 |issue = 3 |pages = 3608–3611 |year = 1902 |doi = 10.1002/cber.190203503187}}</ref>他认为錒与[[鑭]]相似,并在1904年将其命名为“emanium”。<ref>{{cite journal |title = Ueber den Emanationskörper (Emanium) |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 37 |issue = 2 |pages = 1696–1699 |year = 1904 |doi = 10.1002/cber.19040370280}}</ref>科学家在比较德贝尔恩所得出的半衰期数据后,<ref>{{cite journal |title = Sur l'actinium |first = André-Louis |last = Debierne |journal = Comptes rendus |volume = 139 |pages = 538–540 |year = 1904}}</ref>決定依最早发现者的意愿把该元素正式定名为“actinium”。<ref>{{cite journal |title = Ueber Emanium |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 37 |issue = 2 |pages = 1696–1699 |year = 1904 |doi = 10.1002/cber.19040370280}}</ref><ref>{{cite journal |title = Ueber Emanium |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 38 |issue = 1 |pages = 775–778 |year = 1905 |doi = 10.1002/cber.190503801130}}</ref>


<!--发现者争议Articles published in the 1970s<ref>{{cite journal |title = The Discovery of Actinium |first = Harold W. |last = Kirby |journal = Isis |volume = 62 |issue = 3 |pages = 290–308 |year = 1971 |jstor=229943 |doi =10.1086/350760}}</ref> and later<ref name="Adloff">{{cite journal |title = The centenary of a controversial discovery: actinium |first = J. P. |last = Adloff |journal = Radiochim. Acta |volume = 88 |pages = 123–128 |year = 2000 |doi = 10.1524/ract.2000.88.3-4.123 |issue = 3–4_2000}}</ref> suggest that Debierne's results published in 1904 conflict with those reported in 1899 and 1900. This has led some authors to advocate that Giesel alone should be credited with the discovery.<ref>{{cite journal |last1 = Kirby |first1 = Harold W. |last2 = Morss |first2 = Lester R. |title = The Chemistry of the Actinide and Transactinide Elements |pages = 18 |year = 2006 |doi = 10.1007/1-4020-3598-5_2 |chapter = Actinium |isbn = 978-1-4020-3555-5}}</ref> A less confrontational vision of scientific discovery is proposed by Adloff.<ref name="Adloff" /> He suggests that hindsight criticism of the early publications should be mitigated by the nascent state of radiochemistry, highlights the prudence of Debierne's claims in the original papers, and notes that nobody can contend that Debierne's substance did not contain actinium. Debierne, who is now considered by the vast majority of historians as the discoverer, lost interest in the element and left the topic. Giesel, on the other hand, can rightfully be credited with the first preparation of radiochemically pure actinium and with the identification of its atomic number 89.
<!--发现者争议Articles published in the 1970s<ref>{{cite journal |title = The Discovery of Actinium |first = Harold W. |last = Kirby |journal = Isis |volume = 62 |issue = 3 |pages = 290–308 |year = 1971 |jstor=229943 |doi =10.1086/350760}}</ref> and later<ref name="Adloff">{{cite journal |title = The centenary of a controversial discovery: actinium |first = J. P. |last = Adloff |journal = Radiochim. Acta |volume = 88 |pages = 123–128 |year = 2000 |doi = 10.1524/ract.2000.88.3-4.123 |issue = 3–4_2000}}</ref> suggest that Debierne's results published in 1904 conflict with those reported in 1899 and 1900. This has led some authors to advocate that Giesel alone should be credited with the discovery.<ref>{{cite journal |last1 = Kirby |first1 = Harold W. |last2 = Morss |first2 = Lester R. |title = The Chemistry of the Actinide and Transactinide Elements |pages = 18 |year = 2006 |doi = 10.1007/1-4020-3598-5_2 |chapter = Actinium |isbn = 978-1-4020-3555-5}}</ref> A less confrontational vision of scientific discovery is proposed by Adloff.<ref name="Adloff" /> He suggests that hindsight criticism of the early publications should be mitigated by the nascent state of radiochemistry, highlights the prudence of Debierne's claims in the original papers, and notes that nobody can contend that Debierne's substance did not contain actinium. Debierne, who is now considered by the vast majority of historians as the discoverer, lost interest in the element and left the topic. Giesel, on the other hand, can rightfully be credited with the first preparation of radiochemically pure actinium and with the identification of its atomic number 89.
第119行: 第119行:
[[錒]]是首个[[錒系元素]]。这些元素彼此间的特性比[[鑭系元素]]更多元化,因此直到1945年,[[格伦·西奥多·西博格]]才提出为[[元素周期表]]加入錒系元素。这是自从[[德米特里·门捷列夫]]创造元素周期表以来对周期表最大的变动之一。<ref>{{cite journal |title = The Transuranium Elements |first = Glenn T. |last = Seaborg |journal = Science |volume = 104 |issue = 2704 |year = 1946 |pages = 379–386 |jstor=1675046 |doi = 10.1126/science.104.2704.379 |pmid = 17842184 |bibcode = 1946Sci...104..379S}}</ref>
[[錒]]是首个[[錒系元素]]。这些元素彼此间的特性比[[鑭系元素]]更多元化,因此直到1945年,[[格伦·西奥多·西博格]]才提出为[[元素周期表]]加入錒系元素。这是自从[[德米特里·门捷列夫]]创造元素周期表以来对周期表最大的变动之一。<ref>{{cite journal |title = The Transuranium Elements |first = Glenn T. |last = Seaborg |journal = Science |volume = 104 |issue = 2704 |year = 1946 |pages = 379–386 |jstor=1675046 |doi = 10.1126/science.104.2704.379 |pmid = 17842184 |bibcode = 1946Sci...104..379S}}</ref>


錒在空气中会与氧气、水气迅速反应,在表面产生白色的保护性氧化层。<ref name="blueglow">{{cite journal |title = Preparation of Actinium Metal |first = Joseph G. |last = Stites |journal = J. Am. Chem. Soc. |year = 1955 |volume = 77 |issue = 1 |pages = 237–240 |doi = 10.1021/ja01606a085 |last2 = Salutsky |first2 = Murrell L. |last3 = Stone |first3 = Bob D.}}</ref>与大部份鑭系和錒系元素一样,錒的[[氧化态]]通常是+3;Ac<sup>3+</sup>离子在溶液中无色。<ref name=bse/>錒的[[电子排布]]是6d<sup>1</sup>7s<sup>2</sup>,所以当失去3个[[电子]]后,就会形成稳定的闭层,与[[惰性气体]][[氡]]一样。<ref name="brit" />錒的+2态只出现在二氫化錒(AcH<sub>2</sub>)中。<ref name="ach" />
錒在空气中会与氧气、水气迅速反应,在表面产生白色的保护性氧化层。<ref name="blueglow">{{cite journal |title = Preparation of Actinium Metal |first = Joseph G. |last = Stites |journal = J. Am. Chem. Soc. |year = 1955 |volume = 77 |issue = 1 |pages = 237–240 |doi = 10.1021/ja01606a085 |last2 = Salutsky |first2 = Murrell L. |last3 = Stone |first3 = Bob D.}}</ref>与大部份鑭系和錒系元素一样,錒的[[氧化态]]通常是+3;Ac<sup>3+</sup>离子在溶液中无色。<ref name=bse/>錒的[[电子排布]]是6d<sup>1</sup>7s<sup>2</sup>,所以当失去3个[[电子]]后,就会形成稳定的闭层,与[[惰性气体]][[氡]]一样。<ref name="brit" />錒的+2态只出现在二氫化錒(AcH<sub>2</sub>)中。<ref name="ach" />


== 化合物 ==
== 化合物 ==
第375行: 第375行:
|isbn=
|isbn=
|oclc=
|oclc=
}}</ref>惟自然界中的錼衰变系早已衰变殆尽,现时地中的<sup>237</sup>Np主要由[[鈾-238|<sup>238</sup>U]]发生{{le|核散裂|Nuclear spallation}}而痕量生成。<ref name="chain">{{cite book|title=Chemistry and Analysis of Radionuclides: Laboratory Techniques and Methodology|publisher=Wiley-VCH|pages=2–3|year=2011 | isbn = 978-3-527-32658-7 |first1=Jukka|last1=Lehto|first2=Xiaolin|last2=Hou}}</ref>
}}</ref>惟自然界中的錼衰变系早已衰变殆尽,现时地中的<sup>237</sup>Np主要由[[鈾-238|<sup>238</sup>U]]发生{{le|核散裂|Nuclear spallation}}而痕量生成。<ref name="chain">{{cite book|title=Chemistry and Analysis of Radionuclides: Laboratory Techniques and Methodology|publisher=Wiley-VCH|pages=2–3|year=2011 | isbn = 978-3-527-32658-7 |first1=Jukka|last1=Lehto|first2=Xiaolin|last2=Hou}}</ref>


含有錒的矿石中也同时含有[[鑭]]及其他[[鑭系元素]]。然而这些元素的化学、物理特性与錒非常接近,再加上錒含量更为稀少,因此从矿石中分离出錒元素的做法并不具实际性,科学家也从未完全分离出錒。<ref name="j2">{{cite journal |doi=10.1021/ja01158a034 |last1=Fried |year=1950 |first1=Sherman |pages=771 |volume=72 |journal=Journal of the American Chemical Society |last2=Hagemann |first2=French |last3=Zachariasen |first3=W. H. |title=The Preparation and Identification of Some Pure Actinium Compounds |issue=2}}</ref>錒元素则通常是在[[核反应炉]]中用中子照射<sup>226</sup>[[鐳|Ra]]产生的,每次产量以毫克计。<ref name=g946/><ref>{{cite book |author=Emeleus, H. J. |title=Advances in inorganic chemistry and radiochemistry |url=http://books.google.com/books?id=K5_LSQqeZ_IC&pg=PA16 |accessdate=2013-12-16 |date=1987-07 |publisher=Academic Press |isbn=978-0-12-023631-2 |page=16 |||}}</ref>
含有錒的矿石中也同时含有[[鑭]]及其他[[鑭系元素]]。然而这些元素的化学、物理特性与錒非常接近,再加上錒含量更为稀少,因此从矿石中分离出錒元素的做法并不具实际性,科学家也从未完全分离出錒。<ref name="j2">{{cite journal |doi=10.1021/ja01158a034 |last1=Fried |year=1950 |first1=Sherman |pages=771 |volume=72 |journal=Journal of the American Chemical Society |last2=Hagemann |first2=French |last3=Zachariasen |first3=W. H. |title=The Preparation and Identification of Some Pure Actinium Compounds |issue=2}}</ref>錒元素则通常是在[[核反应炉]]中用中子照射<sup>226</sup>[[鐳|Ra]]产生的,每次产量以毫克计。<ref name=g946/><ref>{{cite book |author=Emeleus, H. J. |title=Advances in inorganic chemistry and radiochemistry |url=http://books.google.com/books?id=K5_LSQqeZ_IC&pg=PA16 |accessdate=2013-12-16 |date=1987-07 |publisher=Academic Press |isbn=978-0-12-023631-2 |page=16 |||}}</ref>
第381行: 第381行:
:<math>\mathrm{^{226}_{\ 88}Ra\ +\ ^{1}_{0}n\ \longrightarrow \ ^{227}_{\ 88}Ra\ \xrightarrow[42.2 \ min]{\beta^-} \ ^{227}_{\ 89}Ac}</math>
:<math>\mathrm{^{226}_{\ 88}Ra\ +\ ^{1}_{0}n\ \longrightarrow \ ^{227}_{\ 88}Ra\ \xrightarrow[42.2 \ min]{\beta^-} \ ^{227}_{\ 89}Ac}</math>


该反应的錒产量约为鐳重量的2%。<sup>227</sup>Ac可再捕获中子,形成少量的<sup>228</sup>Ac。合成过后,錒需从鐳以及其他的衰变产物中分离出来,这些产物包括釷、釙、鉛和鉍。第一种分离法使用噻吩甲酰三氟丙酮和[[苯]]的混合溶液。调整该溶液的[[pH值]],可从含衰变产物的溶液中萃取出特定的元素(錒需要pH 6.0左右)。<ref name=j1/>另一种分离法是在[[硝酸]]中以当的[[树脂]]进行负离子交换法,先把鐳和錒与釷分离开来(分离系数为1百万),再用正离子交换树脂和硝酸洗脫液把錒从鐳中提取出来(系数为100)。<ref name="sep" />
该反应的錒产量约为鐳重量的2%。<sup>227</sup>Ac可再捕获中子,形成少量的<sup>228</sup>Ac。合成过后,錒需从鐳以及其他的衰变产物中分离出来,这些产物包括釷、釙、鉛和鉍。第一种分离法使用噻吩甲酰三氟丙酮和[[苯]]的混合溶液。调整该溶液的[[pH值]],可从含衰变产物的溶液中萃取出特定的元素(錒需要pH 6.0左右)。<ref name=j1/>另一种分离法是在[[硝酸]]中以当的[[树脂]]进行负离子交换法,先把鐳和錒与釷分离开来(分离系数为1百万),再用正离子交换树脂和硝酸洗脫液把錒从鐳中提取出来(系数为100)。<ref name="sep" />


[[德国]]和[[澳大利亚]]的科学家在2000年首次人工合成<sup>225</sup>Ac。[[德国]]超鈾元素研究所所使用的是[[回旋加速器]],而[[澳大利亚]]的研究人员则使用位于[[悉尼]]圣乔治医院的[[直线加速器]]。<ref>{{cite journal |doi = 10.1016/j.apradiso.2008.11.012 |year = 2009 |author = Melville, G; Allen, Bj |title = Cyclotron and linac production of Ac-225 |volume = 67 |issue = 4 |pages = 549–55 |pmid = 19135381 |journal = Applied radiation and isotopes}}</ref>其合成方法为,对鐳-226目标体进行20至30 [[电子伏特|MeV]]能量[[氘]]离子撞击。这一反应同时会产生半衰期为29小时的<sup>226</sup>Ac同位素,但由于<sup>225</sup>Ac的半衰期有10天,所以前者不会对后者造成不纯。<sup>225</sup>Ac是一种稀有的同位素,在[[放射线疗法]]中有潜在的用途。<ref>Russell, Pamela J.; Jackson, Paul and Kingsley, Elizabeth Anne [http://books.google.com/books?id=K1y6k5bdlWkC&pg=PA336 Prostate cancer methods and protocols] , Humana Press, 2003, ISBN 978-0-89603-978-0, p. 336</ref>
[[德国]]和[[澳大利亚]]的科学家在2000年首次人工合成<sup>225</sup>Ac。[[德国]]超鈾元素研究所所使用的是[[回旋加速器]],而[[澳大利亚]]的研究人员则使用位于[[悉尼]]圣乔治医院的[[直线加速器]]。<ref>{{cite journal |doi = 10.1016/j.apradiso.2008.11.012 |year = 2009 |author = Melville, G; Allen, Bj |title = Cyclotron and linac production of Ac-225 |volume = 67 |issue = 4 |pages = 549–55 |pmid = 19135381 |journal = Applied radiation and isotopes}}</ref>其合成方法为,对鐳-226目标体进行20至30 [[电子伏特|MeV]]能量[[氘]]离子撞击。这一反应同时会产生半衰期为29小时的<sup>226</sup>Ac同位素,但由于<sup>225</sup>Ac的半衰期有10天,所以前者不会对后者造成不纯。<sup>225</sup>Ac是一种稀有的同位素,在[[放射线疗法]]中有潜在的用途。<ref>Russell, Pamela J.; Jackson, Paul and Kingsley, Elizabeth Anne [http://books.google.com/books?id=K1y6k5bdlWkC&pg=PA336 Prostate cancer methods and protocols] , Humana Press, 2003, ISBN 978-0-89603-978-0, p. 336</ref>


在1100至1300&nbsp;°C间以[[鋰]]气体对氟化錒进行还原反应,可以产生錒金属。太高的温度会使产物气化,而太低温则会导致反应不能完全进行。鋰的氟化物揮发性比其他[[鹼金属]]的高,因此最合用于这一反应中。<ref name="CRC">Hammond, C. R. ''The Elements'' in {{RubberBible86th}}</ref><ref name="blueglow"/>
在1100至1300&nbsp;°C间以[[鋰]]气体对氟化錒进行还原反应,可以产生錒金属。太高的温度会使产物气化,而太低温则会导致反应不能完全进行。鋰的氟化物揮发性比其他[[鹼金属]]的高,因此最合用于这一反应中。<ref name="CRC">Hammond, C. R. ''The Elements'' in {{RubberBible86th}}</ref><ref name="blueglow"/>


== 应用 ==
== 应用 ==
第397行: 第397行:


[[File:DOTA polyaminocarboxylic acid.png|缩略图|150px|在放射线疗法中用于运输<sup>225</sup>Ac的[[DOTA (螯合剂)|DOTA]]载体的化学结构。]]
[[File:DOTA polyaminocarboxylic acid.png|缩略图|150px|在放射线疗法中用于运输<sup>225</sup>Ac的[[DOTA (螯合剂)|DOTA]]载体的化学结构。]]
<sup>225</sup>Ac在医学中用于制造<sup>213</sup>[[鉍|Bi]],<ref name=sep>{{cite journal |doi = 10.1016/j.apradiso.2004.12.003 |year = 2005 |volume = 62 |issue = 5 |pages =667–679 |title = Production of actinium-225 for alpha particle mediated radioimmunotherapy |last = Bolla |first = Rose A. |journal = Applied Radiation and Isotopes |pmid = 15763472 |last2 = Malkemus |first2 = D |last3 = Mirzadeh |first3 = S}}</ref>或直接作[[放射线疗法]]的辐射源。<sup>225</sup>Ac的半衰期为10天,比<sup>213</sup>Bi的46小时更合作放射线治疗。<sup>225</sup>Ac及其衰变产物所释放的α粒子可以杀死身体内的癌細胞。最大的困难在于,简单的錒配合物经[[脉注射]]进入体内后,会积累在骨骼和肝臟中,并停留数十年。持续的辐射在杀死癌細胞后,会引发新的[[突变]]。要避免这种问题,可将<sup>225</sup>Ac与[[螯合剂]]结合,例如[[檸檬酸]]、[[乙二胺四乙酸]](EDTA)和[[喷替酸|二乙烯三胺五乙酸]](DTPA)。这可降低錒在骨骼中的积累,但从身体排泄的量仍然不高。改用HEHA<ref>{{cite journal |title=Improved in Vivo Stability of Actinium-225 Macrocyclic Complexes}}</ref>或耦合至[[曲妥珠单抗]]的[[DOTA (螯合剂)|DOTA]](1,4,7,10-四氮杂环十二烷-1,4,7,10-四羧酸)等螯合剂可以增加錒的排泄量。曲妥珠单抗是一种[[单株抗体]],能够干[[HER2/neu]][[受体 (生物化学)|受体]]。科学家把錒与DOTA结合后注射到老鼠体内,发现疗法有效对抗[[白血病]]、[[淋巴瘤]]、[[乳癌]]、[[卵巢癌]]、[[神经母細胞瘤]]和[[前列腺癌]]。<ref>{{cite journal |last1=McDevitt |first1=Michael R. |last2=Ma |first2=Dangshe |last3=Lai |first3=Lawrence T. |last4=Simon |first4=Jim |last5=Borchardt |first5=Paul |last6=Frank |first6=R. Keith |last7=Wu |first7=Karen |last8=Pellegrini |first8=Virginia |last9=Curcio |first9=Michael J. |last10=Miederer |first10=Matthias |last11=Bander |first11=Neil H. |last12=Scheinberg |first12=David A. |displayauthors=3 |title=Tumor Therapy with Targeted Atomic Nanogenerators |year=2001 |journal=Science |volume=294 |issue=5546 |pages=1537–1540 |doi=10.1126/science.1064126 |bibcode=2001Sci...294.1537M |pmid=11711678 |url=http://www.studybusiness.com/HTML/Bio/10021/10021-04-2003-BIO-04-E.pdf |||}}</ref><ref>{{cite journal |url=http://cancerres.aacrjournals.org/content/63/16/5084.full.pdf |title=Targeted Actinium-225 in Vivo Generators for Therapy of Ovarian Cancer |author=Borchardt, Paul E. et al. |journal=Cancer Research |volume=63 |issue=16 |pages=5084–5090 |year=2003 |pmid=12941838 |access-date=2013-12-14 |||}}</ref><ref>{{cite journal |author=Ballangrud, A. M. ''et al.'' |title=Alpha-particle emitting atomic generator (Actinium-225)-labeled trastuzumab (herceptin) targeting of breast cancer spheroids: efficacy versus HER2/neu expression |journal=Clinical cancer research : an official journal of the American Association for Cancer Research |volume=10 |issue=13 |pages=4489–97 |year=2004 |pmid=15240541 |doi=10.1158/1078-0432.CCR-03-0800}}</ref>
<sup>225</sup>Ac在医学中用于制造<sup>213</sup>[[鉍|Bi]],<ref name=sep>{{cite journal |doi = 10.1016/j.apradiso.2004.12.003 |year = 2005 |volume = 62 |issue = 5 |pages =667–679 |title = Production of actinium-225 for alpha particle mediated radioimmunotherapy |last = Bolla |first = Rose A. |journal = Applied Radiation and Isotopes |pmid = 15763472 |last2 = Malkemus |first2 = D |last3 = Mirzadeh |first3 = S}}</ref>或直接作[[放射线疗法]]的辐射源。<sup>225</sup>Ac的半衰期为10天,比<sup>213</sup>Bi的46小时更合作放射线治疗。<sup>225</sup>Ac及其衰变产物所释放的α粒子可以杀死身体内的癌細胞。最大的困难在于,简单的錒配合物经[[脉注射]]进入体内后,会积累在骨骼和肝臟中,并停留数十年。持续的辐射在杀死癌細胞后,会引发新的[[突变]]。要避免这种问题,可将<sup>225</sup>Ac与[[螯合剂]]结合,例如[[檸檬酸]]、[[乙二胺四乙酸]](EDTA)和[[喷替酸|二乙烯三胺五乙酸]](DTPA)。这可降低錒在骨骼中的积累,但从身体排泄的量仍然不高。改用HEHA<ref>{{cite journal |title=Improved in Vivo Stability of Actinium-225 Macrocyclic Complexes}}</ref>或耦合至[[曲妥珠单抗]]的[[DOTA (螯合剂)|DOTA]](1,4,7,10-四氮杂环十二烷-1,4,7,10-四羧酸)等螯合剂可以增加錒的排泄量。曲妥珠单抗是一种[[单株抗体]],能够干[[HER2/neu]][[受体 (生物化学)|受体]]。科学家把錒与DOTA结合后注射到老鼠体内,发现疗法有效对抗[[白血病]]、[[淋巴瘤]]、[[乳癌]]、[[卵巢癌]]、[[神经母細胞瘤]]和[[前列腺癌]]。<ref>{{cite journal |last1=McDevitt |first1=Michael R. |last2=Ma |first2=Dangshe |last3=Lai |first3=Lawrence T. |last4=Simon |first4=Jim |last5=Borchardt |first5=Paul |last6=Frank |first6=R. Keith |last7=Wu |first7=Karen |last8=Pellegrini |first8=Virginia |last9=Curcio |first9=Michael J. |last10=Miederer |first10=Matthias |last11=Bander |first11=Neil H. |last12=Scheinberg |first12=David A. |displayauthors=3 |title=Tumor Therapy with Targeted Atomic Nanogenerators |year=2001 |journal=Science |volume=294 |issue=5546 |pages=1537–1540 |doi=10.1126/science.1064126 |bibcode=2001Sci...294.1537M |pmid=11711678 |url=http://www.studybusiness.com/HTML/Bio/10021/10021-04-2003-BIO-04-E.pdf |||}}</ref><ref>{{cite journal |url=http://cancerres.aacrjournals.org/content/63/16/5084.full.pdf |title=Targeted Actinium-225 in Vivo Generators for Therapy of Ovarian Cancer |author=Borchardt, Paul E. et al. |journal=Cancer Research |volume=63 |issue=16 |pages=5084–5090 |year=2003 |pmid=12941838 |access-date=2013-12-14 |||}}</ref><ref>{{cite journal |author=Ballangrud, A. M. ''et al.'' |title=Alpha-particle emitting atomic generator (Actinium-225)-labeled trastuzumab (herceptin) targeting of breast cancer spheroids: efficacy versus HER2/neu expression |journal=Clinical cancer research : an official journal of the American Association for Cancer Research |volume=10 |issue=13 |pages=4489–97 |year=2004 |pmid=15240541 |doi=10.1158/1078-0432.CCR-03-0800}}</ref>


<sup>227</sup>Ac的半衰期为21.77年,可用来研究海水的緩慢垂直混合作用。这种水流的速度大约为每年50米,因此直接测量是无法得到足够的精度的。科学家通过探测各同位素在不同深度的相对比例变化,可以推算出混合作用的发生速率。具体的物理原理如下。海水含有均衡分布的<sup>235</sup>U。其衰变产物<sup>231</sup>Pa会慢慢沉澱到海底,所以其濃度会随深度增加,并在一定的深度以下维持恒等。<sup>231</sup>Pa再衰变成<sup>227</sup>Ac。混合作用会把海底的<sup>227</sup>Ac提升上来,因此<sup>227</sup>Ac的濃度随深度一直增加至海底。科学家分析<sup>231</sup>Pa和<sup>227</sup>Ac的濃度﹣深度关系,可以间接研究海水的混合作用。<ref>{{cite journal |last1=Nozaki |first1=Yoshiyuki |title=Excess 227Ac in deep ocean water |journal=Nature |volume=310 |pages=486 |year=1984 |doi=10.1038/310486a0 | issue=5977 | bibcode = 1984Natur.310..486N}}</ref><ref>{{cite journal |last1=Geibert |first1=W. |last2=Rutgers Van Der Loeff |first2=M.M. |last3=Hanfland |first3=C. |last4=Dauelsberg |first4=H.-J. |title=Actinium-227 as a deep-sea tracer: sources, distribution and applications |journal=Earth and Planetary Science Letters |volume=198 |pages=147 |year=2002 |doi=10.1016/S0012-821X(02)00512-5 |bibcode=2002E&PSL.198..147G}}</ref>
<sup>227</sup>Ac的半衰期为21.77年,可用来研究海水的緩慢垂直混合作用。这种水流的速度大约为每年50米,因此直接测量是无法得到足够的精度的。科学家通过探测各同位素在不同深度的相对比例变化,可以推算出混合作用的发生速率。具体的物理原理如下。海水含有均衡分布的<sup>235</sup>U。其衰变产物<sup>231</sup>Pa会慢慢沉澱到海底,所以其濃度会随深度增加,并在一定的深度以下维持恒等。<sup>231</sup>Pa再衰变成<sup>227</sup>Ac。混合作用会把海底的<sup>227</sup>Ac提升上来,因此<sup>227</sup>Ac的濃度随深度一直增加至海底。科学家分析<sup>231</sup>Pa和<sup>227</sup>Ac的濃度﹣深度关系,可以间接研究海水的混合作用。<ref>{{cite journal |last1=Nozaki |first1=Yoshiyuki |title=Excess 227Ac in deep ocean water |journal=Nature |volume=310 |pages=486 |year=1984 |doi=10.1038/310486a0 | issue=5977 | bibcode = 1984Natur.310..486N}}</ref><ref>{{cite journal |last1=Geibert |first1=W. |last2=Rutgers Van Der Loeff |first2=M.M. |last3=Hanfland |first3=C. |last4=Dauelsberg |first4=H.-J. |title=Actinium-227 as a deep-sea tracer: sources, distribution and applications |journal=Earth and Planetary Science Letters |volume=198 |pages=147 |year=2002 |doi=10.1016/S0012-821X(02)00512-5 |bibcode=2002E&PSL.198..147G}}</ref>


== 安全 ==
== 安全 ==
<sup>227</sup>Ac的放射性极强,因此有关的实验都必须在专业实验室的[[手套箱]]中进行。当[[三氯化錒]]经[[脉]]注射进入[[老鼠]]体内后,约33%的錒元素积累在[[骨骼]]中,50%进入[[肝臟]]。其毒性稍低于[[鋂]]和[[鈽]]。<ref>{{cite journal |doi = 10.2172/4406766 |title = Toxicology of Actinium Equilibrium Mixture |first2 = J. |last = Langham |last2 = Storer |first = W. |year = 1952 | journal = Los Alamos Scientific Lab.: Technical Report}}</ref>
<sup>227</sup>Ac的放射性极强,因此有关的实验都必须在专业实验室的[[手套箱]]中进行。当[[三氯化錒]]经[[脉]]注射进入[[老鼠]]体内后,约33%的錒元素积累在[[骨骼]]中,50%进入[[肝臟]]。其毒性稍低于[[鋂]]和[[鈽]]。<ref>{{cite journal |doi = 10.2172/4406766 |title = Toxicology of Actinium Equilibrium Mixture |first2 = J. |last = Langham |last2 = Storer |first = W. |year = 1952 | journal = Los Alamos Scientific Lab.: Technical Report}}</ref>


== 参考资料 ==
== 参考资料 ==