量子信息:修订间差异

求闻百科,共笔求闻
添加的内容 删除的内容
(机器人:将英文日期转换为ISO格式)
(机器人:清理不当的来源、移除无用的模板参数;整理源码)
 
第4行: 第4行:
}}
}}


'''量子信息'''是以[[量子力学]]基本原理为基础,把[[量子]]系統「狀態」所帶有的物理資訊,进行计算、编码和信息传输的全新信息方式<ref name=itp>{{cite web|title=量子信息简介|url=http://www.itp.ac.cn/~suncp/kepu/qinf.pdf|website=中国科学院物理研究所|accessdate=2016-09-27|||}}</ref>。'''
'''量子信息'''是以[[量子力学]]基本原理为基础,把[[量子]]系統「狀態」所帶有的物理資訊,进行计算、编码和信息传输的全新信息方式<ref name=itp>{{cite web|title=量子信息简介|url=http://www.itp.ac.cn/~suncp/kepu/qinf.pdf|website=中国科学院物理研究所|accessdate=2016-09-27}}</ref>。'''


量子資訊最常見的單位是為[[量子位元]](qubit)——也就是一個只有兩個[[能態|狀態]]的量子系統。然而不同於古典數位狀態(其為[[離散]]),一個二狀態量子系統實際上可以在任何時間為兩個狀態的[[疊加態]],這兩狀態也可以是[[本徵態]]。
量子資訊最常見的單位是為[[量子位元]](qubit)——也就是一個只有兩個[[能態|狀態]]的量子系統。然而不同於古典數位狀態(其為[[離散]]),一個二狀態量子系統實際上可以在任何時間為兩個狀態的[[疊加態]],這兩狀態也可以是[[本徵態]]。
第16行: 第16行:
1935年,[[阿爾伯特·愛因斯坦]]、[[鮑里斯·波多爾斯基]]和[[納森·羅森]]提出了[[愛因斯坦-波多爾斯基-羅森悖論]],客观上揭示了[[量子纠缠]]现象。
1935年,[[阿爾伯特·愛因斯坦]]、[[鮑里斯·波多爾斯基]]和[[納森·羅森]]提出了[[愛因斯坦-波多爾斯基-羅森悖論]],客观上揭示了[[量子纠缠]]现象。


1984年,[[查尔斯·貝內特]](Charles Bennett)與[[吉勒·布拉薩]](Gilles Brassard)提出一种[[量子密鑰分發|量子密码分发协议]],后被称为[[量子密鑰分發#BB84协议|BB84协议]]<ref>{{Cite journal|title=Quantum cryptography: Public key distribution and coin tossing|author=C. H. Bennett and G. Brassard.|url=https://www.cs.ucsb.edu/~chong/290N-W06/BB84.pdf|journal=In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing,|issue=|doi=|others=|year=1984|location=紐約|volume=175|page=8|pmid=|access-date=2016-08-22|||}}</ref>。
1984年,[[查尔斯·貝內特]](Charles Bennett)與[[吉勒·布拉薩]](Gilles Brassard)提出一种[[量子密鑰分發|量子密码分发协议]],后被称为[[量子密鑰分發#BB84协议|BB84协议]]<ref>{{Cite journal|title=Quantum cryptography: Public key distribution and coin tossing|author=C. H. Bennett and G. Brassard.|url=https://www.cs.ucsb.edu/~chong/290N-W06/BB84.pdf|journal=In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing,|issue=|doi=|others=|year=1984|location=紐約|volume=175|page=8|pmid=|access-date=2016-08-22}}</ref>。


1994年,數學家[[彼得·秀爾]]發現針對[[整數分解]]的[[秀爾演算法]]({{lang|en|Shor}}算法)。2001年,IBM使用[[核磁共振量子計算|NMR實做]]的量子計算機以及7個[[量子位元]]展示了秀爾演算法的實例,將15分解成3×5<ref name="VSBYSC01">{{Citation |last=Vandersypen |first=Lieven M. K. |last2=Steffen |first2=Matthias |last3=Breyta |first3=Gregory |last4=Yannoni |first4=Costantino S. |last5=Sherwood |first5=Mark H. |last6=Chuang |first6=Isaac L. |lastauthoramp=yes |year=2001 |title=Experimental realization of Shor's量子factoring algorithm using nuclear magnetic resonance |journal=[[Nature (journal)|Nature]] |volume=414 |issue=6866 |pages=883–887 |doi=10.1038/414883a }}.</ref>。
1994年,數學家[[彼得·秀爾]]發現針對[[整數分解]]的[[秀爾演算法]]({{lang|en|Shor}}算法)。2001年,IBM使用[[核磁共振量子計算|NMR實做]]的量子計算機以及7個[[量子位元]]展示了秀爾演算法的實例,將15分解成3×5<ref name="VSBYSC01">{{Citation |last=Vandersypen |first=Lieven M. K. |last2=Steffen |first2=Matthias |last3=Breyta |first3=Gregory |last4=Yannoni |first4=Costantino S. |last5=Sherwood |first5=Mark H. |last6=Chuang |first6=Isaac L. |lastauthoramp=yes |year=2001 |title=Experimental realization of Shor's量子factoring algorithm using nuclear magnetic resonance |journal=[[Nature (journal)|Nature]] |volume=414 |issue=6866 |pages=883–887 |doi=10.1038/414883a }}.</ref>。
第22行: 第22行:
=== 相干特性 ===
=== 相干特性 ===
{{main|量子相干性|量子纠缠}}
{{main|量子相干性|量子纠缠}}
[[File:EPR-Experiment Bohm 1676x516 zh.png|缩略图|350px||[[爱因斯坦-波多尔斯基-罗森佯谬|EPR实验]]假設一個零自旋中性[[π介子]]衰變成一個[[電子]]與一個[[正電子]],這兩個衰變產物各自朝著相反方向移動,雖然彼此之間相隔一段距離,它們仍舊會發生[[量子糾纏]]現象。]]
[[File:EPR-Experiment Bohm 1676x516 zh.png|thumb|350px|right|[[爱因斯坦-波多尔斯基-罗森佯谬|EPR实验]]假設一個零自旋中性[[π介子]]衰變成一個[[電子]]與一個[[正電子]],這兩個衰變產物各自朝著相反方向移動,雖然彼此之間相隔一段距離,它們仍舊會發生[[量子糾纏]]現象。]]
由于[[量子相干性]],[[量子比特]]在测量过程中会表现出与经典情况完全不同的行为<ref name="nature">{{Cite journal |first1=A. D. |last1=O'Connell |first2=M. |last2=Hofheinz |first3=M. |last3=Ansmann |first4=R. C. |last4=Bialczak |first5=M. |last5=Lenander |first6=E. |last6=Lucero |first7=M. |last7=Neeley |first8=D. |last8=Sank |first9=H. |last9=Wang |lastauthoramp=yes |title=Quantum ground state and single-phonon control of a mechanical resonator |journal=Nature |volume=464 |issue= 7289|pages=697–703 |year=2010 |doi=10.1038/nature08967 |bibcode = 2010Natur.464..697O |pmid=20237473 }}</ref>。测量仪器与被测系统的相互作用会引起所谓的[[波包塌缩]]。这时相干性将被彻底破坏,即发生了所谓的[[量子退相干]]<ref name=Schlosshauer2007>{{cite book|author=Maximilian A. Schlosshauer|title=Decoherence And the Quantum-To-Classical Transition|date=2007-01-01|publisher=Springer Science & Business Media|isbn=978-3-540-35773-5}}</ref>。[[量子纠缠]]是多比特系统特有的量子性质。两个比特的量子系统不仅有经典系统中的4种不同的状态,并且可以处在非平凡的双粒子相干叠加态(量子纠缠态)上,这构成了量子通讯的物理基础<ref name=itp/>。
由于[[量子相干性]],[[量子比特]]在测量过程中会表现出与经典情况完全不同的行为<ref name="nature">{{Cite journal |first1=A. D. |last1=O'Connell |first2=M. |last2=Hofheinz |first3=M. |last3=Ansmann |first4=R. C. |last4=Bialczak |first5=M. |last5=Lenander |first6=E. |last6=Lucero |first7=M. |last7=Neeley |first8=D. |last8=Sank |first9=H. |last9=Wang |lastauthoramp=yes |title=Quantum ground state and single-phonon control of a mechanical resonator |journal=Nature |volume=464 |issue= 7289|pages=697–703 |year=2010 |doi=10.1038/nature08967 |bibcode = 2010Natur.464..697O |pmid=20237473 }}</ref>。测量仪器与被测系统的相互作用会引起所谓的[[波包塌缩]]。这时相干性将被彻底破坏,即发生了所谓的[[量子退相干]]<ref name=Schlosshauer2007>{{cite book|author=Maximilian A. Schlosshauer|title=Decoherence And the Quantum-To-Classical Transition|date=2007-01-01|publisher=Springer Science & Business Media|isbn=978-3-540-35773-5}}</ref>。[[量子纠缠]]是多比特系统特有的量子性质。两个比特的量子系统不仅有经典系统中的4种不同的状态,并且可以处在非平凡的双粒子相干叠加态(量子纠缠态)上,这构成了量子通讯的物理基础<ref name=itp/>。


第28行: 第28行:
=== 量子通信 ===
=== 量子通信 ===
{{main|量子密碼學|量子隱形傳態}}
{{main|量子密碼學|量子隱形傳態}}
美国在2005年建成了[[DARPA量子网络]]<ref>(英文)C. Elliott, “Building the quantum network”, ''New J. Phys.'' '''4''', 46 (2002).</ref><ref>(英文)C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J.Schlafer, and H. Yeh, Current status of the DARPA Quantum Network, Quantum Information and Computation III, E. J. Donkor, A. R. Pirich, and H. E. Brandt, eds., ''Proc. SPIE 5815'', 138--149 (2005).</ref>,连接美国[[BBN公司]]、[[哈佛大学]]和[[波士顿大学]]3个节点。中国在2008年研制了20km级的3方量子电话网络<ref>T.-Y. Chen, H. Liang, Y. Liu, W.-Q. Cai, L. Ju, W.-Y. Liu, J. Wang, H. Yin, K. Chen, Z.-B. Chen, C.-Z. Peng, and J.-W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography”, ''Opt. Exp.'' '''17''', 6540-6549 (2009). [http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-8-6540] 于2010年4月1日查阅</ref><ref>China creates quantum network. ''Physics World'' June 2009 p.11 (2009)</ref><ref>Quantum Phone Calls, ''Science'' '''324''', 568 (2009)</ref>。2009年构建了一个4节点全通型量子通信网络<ref>潘建伟科研团队。[http://quantum.ustc.edu.cn/] 于2010年4月1日查阅</ref>,大大提高了安全通信的距离和密钥产生速率,同时保证了绝对安全性<ref>(英文)W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication”, ''Phys. Rev. Lett.'' '''91''', 057901 (2003).</ref><ref>(英文)X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography”, ''Phys. Rev. Lett.'' '''94''', 230503 (2005).</ref><ref>(英文)H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution”, ''Phys. Rev. Lett.'' '''94''', 230504 (2005).</ref><ref>世界首个全通型量子通信网络落户中科大。《科技日报》,{{cite web |url=http://www.stdaily.com/kjrb/content/2009-09/01/content_99410.htm |title=存档副本 |accessdate=2016-06-27 |||}} 于2010年4月1日查阅</ref>。同年,“金融信息量子通信验证网”在北京正式开通,是世界上首次将量子通信技术应用于金融信息安全传输。2014年中国远程量子密钥分发系统的安全距离扩展至200公里,刷新世界纪录<ref>{{Cite web |url=http://news.ifeng.com/a/20141117/42487480_0.shtml |title=中国量子密钥分发安全距离创纪录 |accessdate=2016-08-22 |||}}</ref>。2016年8月16日,中国发射一颗[[量子科學實驗衛星]]「墨子號」,連接地面光纖量子通信網絡<ref>{{cite news|title=世界第一個量子衛星!中國7月首射掀起通訊新革命|url=http://www.ettoday.net/news/20160526/704968.htm|accessdate=2016-06-27|agency=ETtoday 新聞雲|date=2016年5月26日|||}}</ref><ref>{{cite news|url=http://news.xinhuanet.com/2016-08/16/c_129231459.htm|title=我国成功发射世界首颗量子科学实验卫星“墨子号”|date=2016-08-16|accessdate=2016-08-16|||}}</ref>,并力爭在2030年建成20顆衛星規模的[[全通型量子通信网]]。
美国在2005年建成了[[DARPA量子网络]]<ref>(英文)C. Elliott, “Building the quantum network”, ''New J. Phys.'' '''4''', 46 (2002).</ref><ref>(英文)C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J.Schlafer, and H. Yeh, Current status of the DARPA Quantum Network, Quantum Information and Computation III, E. J. Donkor, A. R. Pirich, and H. E. Brandt, eds., ''Proc. SPIE 5815'', 138--149 (2005).</ref>,连接美国[[BBN公司]]、[[哈佛大学]]和[[波士顿大学]]3个节点。中国在2008年研制了20km级的3方量子电话网络<ref>T.-Y. Chen, H. Liang, Y. Liu, W.-Q. Cai, L. Ju, W.-Y. Liu, J. Wang, H. Yin, K. Chen, Z.-B. Chen, C.-Z. Peng, and J.-W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography”, ''Opt. Exp.'' '''17''', 6540-6549 (2009). [http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-8-6540] 于2010年4月1日查阅</ref><ref>China creates quantum network. ''Physics World'' June 2009 p.11 (2009)</ref><ref>Quantum Phone Calls, ''Science'' '''324''', 568 (2009)</ref>。2009年构建了一个4节点全通型量子通信网络<ref>潘建伟科研团队。[http://quantum.ustc.edu.cn/] 于2010年4月1日查阅</ref>,大大提高了安全通信的距离和密钥产生速率,同时保证了绝对安全性<ref>(英文)W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication”, ''Phys. Rev. Lett.'' '''91''', 057901 (2003).</ref><ref>(英文)X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography”, ''Phys. Rev. Lett.'' '''94''', 230503 (2005).</ref><ref>(英文)H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution”, ''Phys. Rev. Lett.'' '''94''', 230504 (2005).</ref><ref>世界首个全通型量子通信网络落户中科大。《科技日报》,{{cite web |url=http://www.stdaily.com/kjrb/content/2009-09/01/content_99410.htm |title=存档副本 |accessdate=2016-06-27 |||}} 于2010年4月1日查阅</ref>。同年,“金融信息量子通信验证网”在北京正式开通,是世界上首次将量子通信技术应用于金融信息安全传输。2014年中国远程量子密钥分发系统的安全距离扩展至200公里,刷新世界纪录<ref>{{Cite web |url=http://news.ifeng.com/a/20141117/42487480_0.shtml |title=中国量子密钥分发安全距离创纪录 |accessdate=2016-08-22 }}</ref>。2016年8月16日,中国发射一颗[[量子科學實驗衛星]]「墨子號」,連接地面光纖量子通信網絡<ref>{{cite news|title=世界第一個量子衛星!中國7月首射掀起通訊新革命|url=http://www.ettoday.net/news/20160526/704968.htm|accessdate=2016-06-27|agency=ETtoday 新聞雲|date=2016年5月26日}}</ref><ref>{{cite news|url=http://news.xinhuanet.com/2016-08/16/c_129231459.htm|title=我国成功发射世界首颗量子科学实验卫星“墨子号”|date=2016-08-16|accessdate=2016-08-16}}</ref>,并力爭在2030年建成20顆衛星規模的[[全通型量子通信网]]。


=== 量子计算 ===
=== 量子计算 ===
第34行: 第34行:
量子计算机由包含有导线和基本量子门的[[量子线路]]构成,导线用于传递量子信息,量子门用于操作量子信息<ref>郭光灿.[http://wls.iphy.ac.cn/Chinese/1219/1/lzgx/0.pdf 量子信息概论]</ref>。
量子计算机由包含有导线和基本量子门的[[量子线路]]构成,导线用于传递量子信息,量子门用于操作量子信息<ref>郭光灿.[http://wls.iphy.ac.cn/Chinese/1219/1/lzgx/0.pdf 量子信息概论]</ref>。


2015年5月,[[IBM]]在量子運算上取得兩項關鍵性突破,開發出四量子位原型電路(Four Quantum Bit Circuit),成為未來10年量子電腦基礎。另外一項是,可以同時發現兩項量子的錯誤型態,分別為Bit-Flip(位元翻轉)與Phase-Flip(相位翻轉),不同於過往在同一時間內只能找出一種錯誤型態,使量子電腦運作更為穩定。<ref>[http://www.ithome.com.tw/news/95595] ,iThome新聞,2015年5月1日</ref>2016年8月,美国[[馬里蘭大學學院市分校|马里兰大学学院市分校]]发明世界上第一台由5[[量子位元]]组成的可编程量子计算机<ref>{{Cite news|url=http://mt.sohu.com/20160805/n462772920.shtml|title=全球首台可编程量子计算机在美国诞生|last=|first=|date=|work=搜狐新聞|accessdate=2016-08-05|||}}</ref><ref>{{cite journal |url=http://www.nature.com/nature/journal/v536/n7614/full/nature18648.html |title=Demonstration of a small programmable quantum computer with atomic qubits |first1=S. |last1=Debnath |first2=N. M. |last2=Linke |first3=C. |last3=Figgatt |first4=K. A. |last4=Landsman |first5=K. |last5=Wright |first6=C. |last6=Monroe |journal=[[自然 (期刊)|Nature]] |volume=536 |pages=63–66 |date=2016-08-04 |doi=10.1038/nature18648 |language=en |access-date=2016-08-22 |||}}</ref>。
2015年5月,[[IBM]]在量子運算上取得兩項關鍵性突破,開發出四量子位原型電路(Four Quantum Bit Circuit),成為未來10年量子電腦基礎。另外一項是,可以同時發現兩項量子的錯誤型態,分別為Bit-Flip(位元翻轉)與Phase-Flip(相位翻轉),不同於過往在同一時間內只能找出一種錯誤型態,使量子電腦運作更為穩定。<ref>[http://www.ithome.com.tw/news/95595] ,iThome新聞,2015年5月1日</ref>2016年8月,美国[[馬里蘭大學學院市分校|马里兰大学学院市分校]]发明世界上第一台由5[[量子位元]]组成的可编程量子计算机<ref>{{Cite news|url=http://mt.sohu.com/20160805/n462772920.shtml|title=全球首台可编程量子计算机在美国诞生|last=|first=|date=|work=搜狐新聞|accessdate=2016-08-05}}</ref><ref>{{cite journal |url=http://www.nature.com/nature/journal/v536/n7614/full/nature18648.html |title=Demonstration of a small programmable quantum computer with atomic qubits |first1=S. |last1=Debnath |first2=N. M. |last2=Linke |first3=C. |last3=Figgatt |first4=K. A. |last4=Landsman |first5=K. |last5=Wright |first6=C. |last6=Monroe |journal=[[自然 (期刊)|Nature]] |volume=536 |pages=63–66 |date=2016-08-04 |doi=10.1038/nature18648 |language=en |access-date=2016-08-22 }}</ref>。
=== 量子雷达 ===
=== 量子雷达 ===
{{main|量子雷达}}
{{main|量子雷达}}
[[量子雷达]]属于一种新概念雷达,是将量子信息技术引入经典雷达探测领域,提升雷达的综合性能<ref>{{cite web|title=中国量子雷达研制成功 有哪些技术优势|url=http://news.qq.com/a/20160907/030735.htm|website=腾讯新闻|publisher=观察者网|accessdate=2016-09-27|date=2016-09-07|||}}</ref>。量子雷达具有探测距离远、可识别和分辨隐身平台及武器系统等突出特点,未来可进一步应用于导弹防御和空间探测,具有极其广阔的应用前景<ref>{{cite web|author1=张文|title=中国量子雷达研发获突破 隐身战机“克星”将至|url=http://www.chinanews.com/mil/2016/09-22/8010831.shtml|website=中国新闻网|publisher=解放军报|accessdate=2016-09-27|date=2016年9月22日|||}}</ref>。根据利用量子现象和光子发射机制的不同,量子雷达主要可以分为三个类别:一是量子雷达发射非纠缠的量子态电磁波;二是量子雷达发射纠缠的量子态电磁波;三是雷达发射经典态的电磁波<ref>{{cite web|author1=铁流|title=中国量子雷达研制成功 有哪些技术优势|url=http://www.guancha.cn/tieliu/2016_09_07_373679.shtml|website=观察者|accessdate=2016-09-27|date=2016-09-07|||}}</ref>。2008年美國麻省理工學院的Lloyd教授首次提出了量子遠程探測系統模型。2013年義大利的Lopaeva博士在實驗室中達成量子雷達成像探測,證明其有實戰價值的可能性<ref>{{Cite web |url=http://news.ifeng.com/a/20160907/49929146_0.shtml?_zbs_baidu_bk |title=鳳凰衛視-神秘量子雷達 |access-date=2016-09-27 |||}}</ref>。中国首部基于单光子检测的量子雷达系统由中国电科14所研制,中国科学技术大学、 中国电科27所以及南京大学协作完成<ref>{{cite web|author1=贾婧|title=中国研制成功首部量子雷达|url=http://news.sciencenet.cn/htmlnews/2016/9/356277.shtm|website=科学网|publisher=科技日报|accessdate=2016-09-27|date=2016-09-14|||}}</ref>。不过专家表示,量子雷达想要实现工程化可能还有比较漫长的路要走<ref>{{cite web|title=专家:量子雷达还不成熟 对付F35要靠现有装备|url=http://news.ifeng.com/a/20160925/50020350_0.shtml|website=凤凰军事|publisher=环球时报|accessdate=2016-09-27|date=2016年9月25日|||}}</ref>。
[[量子雷达]]属于一种新概念雷达,是将量子信息技术引入经典雷达探测领域,提升雷达的综合性能<ref>{{cite web|title=中国量子雷达研制成功 有哪些技术优势|url=http://news.qq.com/a/20160907/030735.htm|website=腾讯新闻|publisher=观察者网|accessdate=2016-09-27|date=2016-09-07}}</ref>。量子雷达具有探测距离远、可识别和分辨隐身平台及武器系统等突出特点,未来可进一步应用于导弹防御和空间探测,具有极其广阔的应用前景<ref>{{cite web|author1=张文|title=中国量子雷达研发获突破 隐身战机“克星”将至|url=http://www.chinanews.com/mil/2016/09-22/8010831.shtml|website=中国新闻网|publisher=解放军报|accessdate=2016-09-27|date=2016年9月22日}}</ref>。根据利用量子现象和光子发射机制的不同,量子雷达主要可以分为三个类别:一是量子雷达发射非纠缠的量子态电磁波;二是量子雷达发射纠缠的量子态电磁波;三是雷达发射经典态的电磁波<ref>{{cite web|author1=铁流|title=中国量子雷达研制成功 有哪些技术优势|url=http://www.guancha.cn/tieliu/2016_09_07_373679.shtml|website=观察者|accessdate=2016-09-27|date=2016-09-07}}</ref>。2008年美國麻省理工學院的Lloyd教授首次提出了量子遠程探測系統模型。2013年義大利的Lopaeva博士在實驗室中達成量子雷達成像探測,證明其有實戰價值的可能性<ref>{{Cite web |url=http://news.ifeng.com/a/20160907/49929146_0.shtml?_zbs_baidu_bk |title=鳳凰衛視-神秘量子雷達 |access-date=2016-09-27 }}</ref>。中国首部基于单光子检测的量子雷达系统由中国电科14所研制,中国科学技术大学、 中国电科27所以及南京大学协作完成<ref>{{cite web|author1=贾婧|title=中国研制成功首部量子雷达|url=http://news.sciencenet.cn/htmlnews/2016/9/356277.shtm|website=科学网|publisher=科技日报|accessdate=2016-09-27|date=2016-09-14}}</ref>。不过专家表示,量子雷达想要实现工程化可能还有比较漫长的路要走<ref>{{cite web|title=专家:量子雷达还不成熟 对付F35要靠现有装备|url=http://news.ifeng.com/a/20160925/50020350_0.shtml|website=凤凰军事|publisher=环球时报|accessdate=2016-09-27|date=2016年9月25日}}</ref>。
=== 量子博弈 ===
=== 量子博弈 ===
{{le|量子博弈|Quantum game theory}}是Eisert等人在1999年提出的,游戏者可以利用量子规律摆脱所谓的[[囚徒困境]]<ref name=itp/>,防止某一玩家因背叛而获利<ref>{{citation|journal=[[Physical Review A]] |title=Multiplayer quantum games|author=Simon C. Benjamin and Patrick M. Hayden|date=2001-08-13|doi=10.1103/PhysRevA.64.030301|volume=64|issue=3|pages=030301|arxiv = quant-ph/0007038 |bibcode = 2001PhRvA..64c0301B }}, [http://arxiv.org/abs/quant-ph/0007038 arXiv:quant-ph/0007038]</ref>。
{{le|量子博弈|Quantum game theory}}是Eisert等人在1999年提出的,游戏者可以利用量子规律摆脱所谓的[[囚徒困境]]<ref name=itp/>,防止某一玩家因背叛而获利<ref>{{citation|journal=[[Physical Review A]] |title=Multiplayer quantum games|author=Simon C. Benjamin and Patrick M. Hayden|date=2001-08-13|doi=10.1103/PhysRevA.64.030301|volume=64|issue=3|pages=030301|arxiv = quant-ph/0007038 |bibcode = 2001PhRvA..64c0301B }}, [http://arxiv.org/abs/quant-ph/0007038 arXiv:quant-ph/0007038]</ref>。
第68行: 第68行:
* [http://www.worldscinet.com/ijqi/ijqi.shtml International Journal of Quantum Information] World Scientific
* [http://www.worldscinet.com/ijqi/ijqi.shtml International Journal of Quantum Information] World Scientific
* [https://www.springer.com/new+%26+forthcoming+titles+%28default%29/journal/11128 Quantum Information Processing] Springer
* [https://www.springer.com/new+%26+forthcoming+titles+%28default%29/journal/11128 Quantum Information Processing] Springer
* Michael A. Nielsen, Isaac L. Chuang, [http://www.cambridge.org/gb/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=PB&isbn=9781107002173#PkOdhEVJmYvWi4Bd.97 "Quantum Computation and Quantum Information"]
* Michael A. Nielsen, Isaac L. Chuang, [http://www.cambridge.org/gb/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=PB&isbn=9781107002173#PkOdhEVJmYvWi4Bd.97 "Quantum Computation and Quantum Information"]
* J. Watrous, The Theory of Quantum Information (Cambridge Univ. Press, 2018). Freely available at [https://cs.uwaterloo.ca/~watrous/TQI/]
* J. Watrous, The Theory of Quantum Information (Cambridge Univ. Press, 2018). Freely available at [https://cs.uwaterloo.ca/~watrous/TQI/]
* John Preskill, Course Information for Physics 219/Computer Science 219 Quantum Computation, Caltech [http://www.theory.caltech.edu/people/preskill/ph229/]
* John Preskill, Course Information for Physics 219/Computer Science 219 Quantum Computation, Caltech [http://www.theory.caltech.edu/people/preskill/ph229/]
* Masahito Hayashi, [https://www.springer.com/in/book/9783642067693 "Quantum Information: An Introduction"]
* Masahito Hayashi, [https://www.springer.com/in/book/9783642067693 "Quantum Information: An Introduction"]
* Masahito Hayashi, [https://www.springer.com/gb/book/9783662497234 "Quantum Information Theory: Mathematical Foundation"]
* Masahito Hayashi, [https://www.springer.com/gb/book/9783662497234 "Quantum Information Theory: Mathematical Foundation"]
* Charles H. Bennett, Peter W. Shor, "Quantum Information Theory" [https://www.researchgate.net/profile/Fabio_Benatti/publication/226219951_Quantum_Information_Theory/links/0deec517fd717b0130000000.pdf] {{CiteSeerX|10.1.1.89.1572}}
* Charles H. Bennett, Peter W. Shor, "Quantum Information Theory" [https://www.researchgate.net/profile/Fabio_Benatti/publication/226219951_Quantum_Information_Theory/links/0deec517fd717b0130000000.pdf] {{CiteSeerX|10.1.1.89.1572}}
* {{citation|first=Mark M.|last=Wilde|arxiv=1106.1445|title=Quantum Information Theory|year=2017|publisher=Cambridge University Press|bibcode = 2011arXiv1106.1445W |doi=10.1017/9781316809976.001}}
* {{citation|first=Mark M.|last=Wilde|arxiv=1106.1445|title=Quantum Information Theory|year=2017|publisher=Cambridge University Press|bibcode = 2011arXiv1106.1445W |doi=10.1017/9781316809976.001}}
* Vlatko Vedral, [https://global.oup.com/academic/product/introduction-to-quantum-information-science-9780199215706?cc=gb&lang=en& "Introduction to Quantum Information Science"]
* Vlatko Vedral, [https://global.oup.com/academic/product/introduction-to-quantum-information-science-9780199215706?cc=gb&lang=en& "Introduction to Quantum Information Science"]
* {{cite journal |arxiv=1110.3234|doi=10.1103/RevModPhys.84.621|title=Gaussian quantum information|journal=Reviews of Modern Physics|volume=84|issue=2|pages=621–669|year=2012|last1=Weedbrook|first1=Christian|last2=Pirandola|first2=Stefano|last3=García-Patrón|first3=Raúl|last4=Cerf|first4=Nicolas J.|last5=Ralph|first5=Timothy C.|last6=Shapiro|first6=Jeffrey H.|last7=Lloyd|first7=Seth|bibcode=2012RvMP...84..621W}}
* {{cite journal |arxiv=1110.3234|doi=10.1103/RevModPhys.84.621|title=Gaussian quantum information|journal=Reviews of Modern Physics|volume=84|issue=2|pages=621–669|year=2012|last1=Weedbrook|first1=Christian|last2=Pirandola|first2=Stefano|last3=García-Patrón|first3=Raúl|last4=Cerf|first4=Nicolas J.|last5=Ralph|first5=Timothy C.|last6=Shapiro|first6=Jeffrey H.|last7=Lloyd|first7=Seth|bibcode=2012RvMP...84..621W}}
{{Refend}}
{{Refend}}