铝:修订间差异

求闻百科,共笔求闻
添加的内容 删除的内容
→‎参考资料:​清理
(机器人:将英文日期转换为ISO格式)
第300行: 第300行:
[[File:Aluminium - world production trend.svg|缩略图|upright=1.0|左|lang=en|从1900年开始,铝的产量]]
[[File:Aluminium - world production trend.svg|缩略图|upright=1.0|左|lang=en|从1900年开始,铝的产量]]


在20世纪期间,铝的产量迅速上升:1900年世界铝产量为6800公吨,1916年的年产量首次突破10万吨,1941年突破100万吨,1971年则突破1000万吨。<ref name="USGS">{{Cite report||title=Historical Statistics for Mineral Commodities in the United States|chapter=Aluminum|year=2017|publisher=[[United States Geological Survey]]|language=en|access-date=9 November 2017|||}}</ref>1970年代,对铝的需求增加使其成为交易商品。它于 1978 年进入[[伦敦金属交易所]],这是世界上最古老的工业金属交易所。<ref name="aluminiumleader"/>之后铝的产量持续增长:2013年,铝的年产量突破5000万吨。<ref name="USGS"/>
在20世纪期间,铝的产量迅速上升:1900年世界铝产量为6800公吨,1916年的年产量首次突破10万吨,1941年突破100万吨,1971年则突破1000万吨。<ref name="USGS">{{Cite report||title=Historical Statistics for Mineral Commodities in the United States|chapter=Aluminum|year=2017|publisher=[[United States Geological Survey]]|language=en|access-date=2017-11-09|||}}</ref>1970年代,对铝的需求增加使其成为交易商品。它于 1978 年进入[[伦敦金属交易所]],这是世界上最古老的工业金属交易所。<ref name="aluminiumleader"/>之后铝的产量持续增长:2013年,铝的年产量突破5000万吨。<ref name="USGS"/>


铝的{{le|实际价格|real price}}从 1900年的每公吨 14000 美元下降到 1948 年的每公吨 2340 美元(以 1998年美元计)。<ref name="USGS"/>技术进步和经济规模降低了铝的提取和加工成本。然而,开发低品位、质量较差的矿床的需求以及快速增加的投入成本(主要是能源)的使用增加了铝的净成本,{{sfn|Nappi|2013|p=9}}铝的实际价格开始了 1970 年代随着能源成本的上升而增长。{{sfn|Nappi|2013|pp=9–10}}铝的生产从工业化国家转移到生产成本较低的国家。{{sfn|Nappi|2013|p=10}}由于技术进步、能源价格下降、美元汇率和氧化铝的价格,20 世纪后期铝的生产成本发生了变化。{{sfn|Nappi|2013|pp=14–15}} [[金砖国家]]在初级生产和初级消费中的总份额在 2000年代大幅增长。 {{sfn|Nappi|2013|p=17}}得益于丰富的资源、廉价的能源和政府的刺激,中国占了世界产量特别大的份额。{{sfn|Nappi|2013|p=20}}中国的消费份额也从 1972 年的 2% 增加到 2010 年的 40%。{{sfn|Nappi|2013|p=22}}在美国、西欧和日本,大部分的铝用于运输、工程、建筑和包装。{{sfn|Nappi|2013|p=23}}
铝的{{le|实际价格|real price}}从 1900年的每公吨 14000 美元下降到 1948 年的每公吨 2340 美元(以 1998年美元计)。<ref name="USGS"/>技术进步和经济规模降低了铝的提取和加工成本。然而,开发低品位、质量较差的矿床的需求以及快速增加的投入成本(主要是能源)的使用增加了铝的净成本,{{sfn|Nappi|2013|p=9}}铝的实际价格开始了 1970 年代随着能源成本的上升而增长。{{sfn|Nappi|2013|pp=9–10}}铝的生产从工业化国家转移到生产成本较低的国家。{{sfn|Nappi|2013|p=10}}由于技术进步、能源价格下降、美元汇率和氧化铝的价格,20 世纪后期铝的生产成本发生了变化。{{sfn|Nappi|2013|pp=14–15}} [[金砖国家]]在初级生产和初级消费中的总份额在 2000年代大幅增长。 {{sfn|Nappi|2013|p=17}}得益于丰富的资源、廉价的能源和政府的刺激,中国占了世界产量特别大的份额。{{sfn|Nappi|2013|p=20}}中国的消费份额也从 1972 年的 2% 增加到 2010 年的 40%。{{sfn|Nappi|2013|p=22}}在美国、西欧和日本,大部分的铝用于运输、工程、建筑和包装。{{sfn|Nappi|2013|p=23}}
第310行: 第310行:
生产铝是高度耗能的,因此铝的生产商倾向于将冶炼厂设在电力充足且价格低廉的地方。<ref name="WMP">{{cite book|url=http://www.bgs.ac.uk/downloads/start.cfm?id=1388|title=World Mineral Production 2003–2007|last1=Brown|first1=T.J.|date=2009|publisher=[[British Geological Survey]]|access-date=2014-12-01|||}}</ref>截至 2019 年,全球最大的铝[[冶炼]]厂位于中国、印度、俄罗斯、加拿大和阿拉伯联合酋长国,<ref name=":0">{{Cite journal|title=USGS Minerals Information: Mineral Commodity Summaries|url=https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-aluminum.pdf|access-date=2020-12-17|website=minerals.usgs.gov|language=en|doi=10.3133/70194932|||}}</ref>而中国是迄今为止最大的铝生产国,占世界份额的 55%。
生产铝是高度耗能的,因此铝的生产商倾向于将冶炼厂设在电力充足且价格低廉的地方。<ref name="WMP">{{cite book|url=http://www.bgs.ac.uk/downloads/start.cfm?id=1388|title=World Mineral Production 2003–2007|last1=Brown|first1=T.J.|date=2009|publisher=[[British Geological Survey]]|access-date=2014-12-01|||}}</ref>截至 2019 年,全球最大的铝[[冶炼]]厂位于中国、印度、俄罗斯、加拿大和阿拉伯联合酋长国,<ref name=":0">{{Cite journal|title=USGS Minerals Information: Mineral Commodity Summaries|url=https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-aluminum.pdf|access-date=2020-12-17|website=minerals.usgs.gov|language=en|doi=10.3133/70194932|||}}</ref>而中国是迄今为止最大的铝生产国,占世界份额的 55%。


根据[[国际资源委员会]]的{{le|社会金属库存报告|Metal Stocks in Society report}},全球[[平均每人]]在社会中使用的铝(即汽车、建筑、电子产品等)为{{convert|80|kg|abbr=on}}。<ref>{{cite report |last1=Graedel |first1=T.E. |title=Metal stocks in Society&nbsp;– Scientific Synthesis |year=2010 |url=http://www.unep.fr/shared/publications/pdf/DTIx1264xPA-Metal%20stocks%20in%20society.pdf |isbn=978-92-807-3082-1 |publisher=International Resource Panel |access-date=18 April 2017 |page=17 |display-authors=etal<!--only mentions the lead author; others are not named--> |||}}</ref>
根据[[国际资源委员会]]的{{le|社会金属库存报告|Metal Stocks in Society report}},全球[[平均每人]]在社会中使用的铝(即汽车、建筑、电子产品等)为{{convert|80|kg|abbr=on}}。<ref>{{cite report |last1=Graedel |first1=T.E. |title=Metal stocks in Society&nbsp;– Scientific Synthesis |year=2010 |url=http://www.unep.fr/shared/publications/pdf/DTIx1264xPA-Metal%20stocks%20in%20society.pdf |isbn=978-92-807-3082-1 |publisher=International Resource Panel |access-date=2017-04-18 |page=17 |display-authors=etal<!--only mentions the lead author; others are not named--> |||}}</ref>


=== 拜耳法 ===
=== 拜耳法 ===
第343行: 第343行:
=== 金属铝 ===
=== 金属铝 ===
{{See also|铝合金}}
{{See also|铝合金}}
铝在 2016年的全球产量为 5880万吨,仅次于[[铁]](12.31亿吨)。<ref name=BGS2018>{{cite book|url=https://www.bgs.ac.uk/downloads/start.cfm?id=3396|title=World Mineral Production: 2012–2016|last1=Brown|first1=T.J.|last2=Idoine|first2=N.E.|last3=Raycraft|first3=E.R.|last4=Shaw|first4=R.A.|last5=Hobbs|first5=S.F.|last6=Everett|first6=P.|last7=Deady|first7=E.A.|last8=Bide|first8=T.|display-authors=3|date=2018|publisher=British Geological Survey|isbn=978-0-85272-882-6|access-date=2018-07-10|||}}</ref><ref>{{cite encyclopedia|title=Aluminum|encyclopedia=[[Encyclopædia Britannica]]|url=http://www.britannica.com/EBchecked/topic/17944/aluminum-Al|access-date=6 March 2012|||}}</ref>
铝在 2016年的全球产量为 5880万吨,仅次于[[铁]](12.31亿吨)。<ref name=BGS2018>{{cite book|url=https://www.bgs.ac.uk/downloads/start.cfm?id=3396|title=World Mineral Production: 2012–2016|last1=Brown|first1=T.J.|last2=Idoine|first2=N.E.|last3=Raycraft|first3=E.R.|last4=Shaw|first4=R.A.|last5=Hobbs|first5=S.F.|last6=Everett|first6=P.|last7=Deady|first7=E.A.|last8=Bide|first8=T.|display-authors=3|date=2018|publisher=British Geological Survey|isbn=978-0-85272-882-6|access-date=2018-07-10|||}}</ref><ref>{{cite encyclopedia|title=Aluminum|encyclopedia=[[Encyclopædia Britannica]]|url=http://www.britannica.com/EBchecked/topic/17944/aluminum-Al|access-date=2012-03-06|||}}</ref>


铝几乎总是以合金的形式出现,这显着改善了其机械性能,尤其是[[回火]]时。例如,常见的[[铝箔]]和饮料罐都是含有92%~99%铝的合金。<ref>{{cite web|url=http://www.madehow.com/Volume-1/Aluminum-Foil.html|title=Aluminum Foil|last1=Millberg|first1=L.S.|website=How Products are Made||||access-date=2007-08-11|volume=1}}</ref>铝主要和[[铜]]、[[锌]]、[[镁]]、[[锰]]和[[硅]]形成合金。<ref>{{cite book|title=Ullmann's Encyclopedia of Industrial Chemistry|last1=Lyle|first1=J.P.|last2=Granger|first2=D.A.|last3=Sanders|first3=R.E.|date=2005|publisher=Wiley-VCH|chapter=Aluminum Alloys|doi=10.1002/14356007.a01_481|title-link=Ullmann's Encyclopedia of Industrial Chemistry|isbn=978-3-527-30673-2}}</ref>
铝几乎总是以合金的形式出现,这显着改善了其机械性能,尤其是[[回火]]时。例如,常见的[[铝箔]]和饮料罐都是含有92%~99%铝的合金。<ref>{{cite web|url=http://www.madehow.com/Volume-1/Aluminum-Foil.html|title=Aluminum Foil|last1=Millberg|first1=L.S.|website=How Products are Made||||access-date=2007-08-11|volume=1}}</ref>铝主要和[[铜]]、[[锌]]、[[镁]]、[[锰]]和[[硅]]形成合金。<ref>{{cite book|title=Ullmann's Encyclopedia of Industrial Chemistry|last1=Lyle|first1=J.P.|last2=Granger|first2=D.A.|last3=Sanders|first3=R.E.|date=2005|publisher=Wiley-VCH|chapter=Aluminum Alloys|doi=10.1002/14356007.a01_481|title-link=Ullmann's Encyclopedia of Industrial Chemistry|isbn=978-3-527-30673-2}}</ref>
第356行: 第356行:
* 从[[炊具]]到[[家具]],很多家庭物品都是用铝制成的。低密度、美观、易于制造和耐用是铝制物品使用的关键因素。
* 从[[炊具]]到[[家具]],很多家庭物品都是用铝制成的。低密度、美观、易于制造和耐用是铝制物品使用的关键因素。
* 机械设备(加工设备、管道、工具)中也会使用铝,因为它具有耐腐蚀性、不会自燃和足够的机械强度。
* 机械设备(加工设备、管道、工具)中也会使用铝,因为它具有耐腐蚀性、不会自燃和足够的机械强度。
* 铝也用于制造便携式电脑机箱。2018 年,[[苹果公司]]公开了使用使用过的饮料罐 (UBC) 材料来包裹其[[MacBook Air]]产品的电子元件。铝可以回收利用,清洁的铝具有剩余的市场价值。<ref name="patapp">{{cite news |title=Apple Patents reveal how the Aluminum Unibody MacBook Enclosure is made from Recycled Pop and Beer Cans & more |url=https://www.patentlyapple.com/patently-apple/2021/03/apple-patents-reveal-how-the-aluminum-unibody-macbook-enclosure-is-made-from-recycled-pop-and-beer-cans-more.html |publisher=Patenly Apple |date=March 2021 |access-date=2021-05-24 |||}}</ref>
* 铝也用于制造便携式电脑机箱。2018 年,[[苹果公司]]公开了使用使用过的饮料罐 (UBC) 材料来包裹其[[MacBook Air]]产品的电子元件。铝可以回收利用,清洁的铝具有剩余的市场价值。<ref name="patapp">{{cite news |title=Apple Patents reveal how the Aluminum Unibody MacBook Enclosure is made from Recycled Pop and Beer Cans & more |url=https://www.patentlyapple.com/patently-apple/2021/03/apple-patents-reveal-how-the-aluminum-unibody-macbook-enclosure-is-made-from-recycled-pop-and-beer-cans-more.html |publisher=Patenly Apple |date=2021-03 |access-date=2021-05-24 |||}}</ref>


=== 铝化合物 ===
=== 铝化合物 ===
第368行: 第368行:
* [[磷酸铝]]可用于制造玻璃、陶瓷、[[木浆]]和纸制品、[[化妆品]]、油漆、{{le|油光漆|Varnish}}和牙科[[水泥]]。<ref>{{Cite book||title=Occupational Skin Disease|date=1983|publisher=Grune & Stratton|isbn=978-0-8089-1494-5|language=en|access-date=2017-06-14|||}}</ref>
* [[磷酸铝]]可用于制造玻璃、陶瓷、[[木浆]]和纸制品、[[化妆品]]、油漆、{{le|油光漆|Varnish}}和牙科[[水泥]]。<ref>{{Cite book||title=Occupational Skin Disease|date=1983|publisher=Grune & Stratton|isbn=978-0-8089-1494-5|language=en|access-date=2017-06-14|||}}</ref>
* [[氢氧化铝]]是一种[[抗酸药]]和媒染剂。它也用于[[水]]净化、玻璃和陶瓷的制造以及[[织物]]的[[防水]]。<ref>{{cite book|title=Fundamentals of pharmacology: a text for nurses and health professionals|author1=Galbraith, A|author2=Bullock, S|author3=Manias, E|author4=Hunt, B|author5=Richards, A|publisher=Pearson|year=1999|location=Harlow|pages=482}}</ref><ref name="papich">{{Cite book|title=Saunders Handbook of Veterinary Drugs|last=Papich|first=Mark G.|date=2007|publisher=Saunders/Elsevier|isbn=978-1-4160-2888-8|edition=2nd|location=St. Louis, Mo|pages=15–16|chapter=Aluminum Hydroxide and Aluminum Carbonate}}</ref>
* [[氢氧化铝]]是一种[[抗酸药]]和媒染剂。它也用于[[水]]净化、玻璃和陶瓷的制造以及[[织物]]的[[防水]]。<ref>{{cite book|title=Fundamentals of pharmacology: a text for nurses and health professionals|author1=Galbraith, A|author2=Bullock, S|author3=Manias, E|author4=Hunt, B|author5=Richards, A|publisher=Pearson|year=1999|location=Harlow|pages=482}}</ref><ref name="papich">{{Cite book|title=Saunders Handbook of Veterinary Drugs|last=Papich|first=Mark G.|date=2007|publisher=Saunders/Elsevier|isbn=978-1-4160-2888-8|edition=2nd|location=St. Louis, Mo|pages=15–16|chapter=Aluminum Hydroxide and Aluminum Carbonate}}</ref>
* [[氢化铝锂]]是一种强还原剂,用于[[有机化学]]。<ref>{{Citation|last=Brown|first=Weldon G.|title=Reductions by Lithium Aluminum Hydride|date=2011-03-15|url=http://doi.wiley.com/10.1002/0471264180.or006.10|work=Organic Reactions|pages=469–510|editor-last=John Wiley & Sons, Inc.|place=Hoboken, NJ, USA|publisher=John Wiley & Sons, Inc.|language=en|doi=10.1002/0471264180.or006.10|isbn=978-0-471-26418-7|access-date=2021-05-22|||}}</ref><ref>{{cite encyclopedia|year=2007|title=Lithium Aluminium Hydride|encyclopedia=SASOL Encyclopaedia of Science and Technology|publisher=New Africa Books||page=143|isbn=978-1-86928-384-1|author1=Gerrans, G.C.|author2=Hartmann-Petersen, P.|access-date=6 September 2017|||}}</ref>
* [[氢化铝锂]]是一种强还原剂,用于[[有机化学]]。<ref>{{Citation|last=Brown|first=Weldon G.|title=Reductions by Lithium Aluminum Hydride|date=2011-03-15|url=http://doi.wiley.com/10.1002/0471264180.or006.10|work=Organic Reactions|pages=469–510|editor-last=John Wiley & Sons, Inc.|place=Hoboken, NJ, USA|publisher=John Wiley & Sons, Inc.|language=en|doi=10.1002/0471264180.or006.10|isbn=978-0-471-26418-7|access-date=2021-05-22|||}}</ref><ref>{{cite encyclopedia|year=2007|title=Lithium Aluminium Hydride|encyclopedia=SASOL Encyclopaedia of Science and Technology|publisher=New Africa Books||page=143|isbn=978-1-86928-384-1|author1=Gerrans, G.C.|author2=Hartmann-Petersen, P.|access-date=2017-09-06|||}}</ref>
* [[有机铝化合物]]是一类[[路易斯酸]]和助催化剂。<ref>{{cite journal|author1=M. Witt|author2=H.W. Roesky|year=2000|title=Organoaluminum chemistry at the forefront of research and development|url=http://tejas.serc.iisc.ernet.in/currsci/feb252000/NMC2.pdf|journal=Curr. Sci.|volume=78|issue=4|pages=410|||}}</ref>
* [[有机铝化合物]]是一类[[路易斯酸]]和助催化剂。<ref>{{cite journal|author1=M. Witt|author2=H.W. Roesky|year=2000|title=Organoaluminum chemistry at the forefront of research and development|url=http://tejas.serc.iisc.ernet.in/currsci/feb252000/NMC2.pdf|journal=Curr. Sci.|volume=78|issue=4|pages=410|||}}</ref>
* {{le|聚甲基铝氧烷|Methylaluminoxane}}可用于生产{{le|乙烯基聚合物|Vinyl_polymer}},例如[[聚乙烯]]。<ref>{{cite journal|author1=A. Andresen|author2=H.G. Cordes|author3=J. Herwig|author4=W. Kaminsky|author5=A. Merck|author6=R. Mottweiler|author7=J. Pein|author8=H. Sinn|author9=H.J. Vollmer|year=1976|title=Halogen-free Soluble Ziegler-Catalysts for the Polymerization of Ethylene|journal=[[Angew. Chem. Int. Ed.]]|volume=15|issue=10|pages=630–632|doi=10.1002/anie.197606301}}</ref>
* {{le|聚甲基铝氧烷|Methylaluminoxane}}可用于生产{{le|乙烯基聚合物|Vinyl_polymer}},例如[[聚乙烯]]。<ref>{{cite journal|author1=A. Andresen|author2=H.G. Cordes|author3=J. Herwig|author4=W. Kaminsky|author5=A. Merck|author6=R. Mottweiler|author7=J. Pein|author8=H. Sinn|author9=H.J. Vollmer|year=1976|title=Halogen-free Soluble Ziegler-Catalysts for the Polymerization of Ethylene|journal=[[Angew. Chem. Int. Ed.]]|volume=15|issue=10|pages=630–632|doi=10.1002/anie.197606301}}</ref>
第380行: 第380行:
|url=https://www.wou.edu/las/physci/ch412/natwater.htm|website=[[Western Oregon University]]
|url=https://www.wou.edu/las/physci/ch412/natwater.htm|website=[[Western Oregon University]]
|title=Environmental Applications. Part I. Common Forms of the Elements in Water
|title=Environmental Applications. Part I. Common Forms of the Elements in Water
|publisher=Western Oregon University|access-date=30 September 2019
|publisher=Western Oregon University|access-date=2019-09-30
|||}}</ref>[[硫酸铝]]的[[半数致死量|LD<sub>50</sub>]] 为6207&nbsp;mg/kg (小鼠,口服),相当于一个{{convert|70|kg|abbr=on}} 的人的半数致死量为435克,<ref name=Ullmann/>尽管致死性和神经毒性的含义不同。<ref name="shaw14">{{cite journal
|||}}</ref>[[硫酸铝]]的[[半数致死量|LD<sub>50</sub>]] 为6207&nbsp;mg/kg (小鼠,口服),相当于一个{{convert|70|kg|abbr=on}} 的人的半数致死量为435克,<ref name=Ullmann/>尽管致死性和神经毒性的含义不同。<ref name="shaw14">{{cite journal
|title=Aluminum-Induced Entropy in Biological Systems: Implications for Neurological Disease|year=2014
|title=Aluminum-Induced Entropy in Biological Systems: Implications for Neurological Disease|year=2014
第397行: 第397行:


=== 毒性 ===
=== 毒性 ===
[[美国卫生与公共服务部]]将铝归类为非致癌物质。<ref name="Piero3">{{cite journal|last=Dolara|first=Piero|date=21 July 2014|title=Occurrence, exposure, effects, recommended intake and possible dietary use of selected trace compounds (aluminium, bismuth, cobalt, gold, lithium, nickel, silver)|journal=International Journal of Food Sciences and Nutrition|volume=65|issue=8|pages=911–924|doi=10.3109/09637486.2014.937801|issn=1465-3478|pmid=25045935|s2cid=43779869}}</ref>{{efn|虽然铝本身不致癌,但[[国际癌症研究机构]]特别指出Söderberg铝生产,<ref name=worldcat>{{Cite book|url=https://www.worldcat.org/oclc/11527472|title=Polynuclear aromatic compounds. part 3, Industrial exposures in aluminium production, coal gasification, coke production, and iron and steel founding.|date=1984|publisher=International Agency for Research on Cancer|others=International Agency for Research on Cancer.|isbn=92-832-1534-6|oclc=11527472|pages=51–59|access-date=7 January 2021|||}}</ref>可能是由于暴露于多环芳香烃。<ref>{{Cite journal|last1=Wesdock|first1=J. C.|last2=Arnold|first2=I. M. F.|date=2014|title=Occupational and Environmental Health in the Aluminum Industry|url= |journal=Journal of Occupational and Environmental Medicine|language=en-US|volume=56|issue=5 Suppl|pages=S5–S11|doi=10.1097/JOM.0000000000000071|pmid=24806726|pmc=4131940|issn=1076-2752}}</ref>}}1988年发表的一篇评论说,几乎没有证据表明正常接触铝会对健康成人构成风险,<ref name="gitelman88">{{cite book ||title=Physiology of Aluminum in Man |||work=Aluminum and Health |publisher=CRC Press |year=1988 |isbn=0-8247-8026-4 |page=90 }}</ref>2014年的多元素毒理学审查则未能发现每公斤[[体重]]消耗量不超过 40 毫克/天的铝的有害影响。<ref name="Piero3" />大多数消耗的铝会留在粪便中,进入血液的小部分铝大部分将通过尿液排出。<ref name="atsdr">{{Cite web|url=https://www.atsdr.cdc.gov/phs/phs.asp?id=1076&tid=34|title=ATSDR – Public Health Statement: Aluminum|website=www.atsdr.cdc.gov|language=en|access-date=2018-07-18|||}}</ref>尽管如此,一些铝确实可以通过血脑屏障,并优先留在阿尔茨海默病患者的大脑中。<ref name="xu92">{{cite journal |pmid=1302300|year=1992|last1=Xu|first1=N.|last2=Majidi|first2=V.|last3=Markesbery|first3=W. R.|last4=Ehmann|first4=W. D.|title=Brain aluminum in Alzheimer's disease using an improved GFAAS method|journal=Neurotoxicology|volume=13|issue=4|pages=735–743}}</ref><ref name="yumoto09">{{cite journal
[[美国卫生与公共服务部]]将铝归类为非致癌物质。<ref name="Piero3">{{cite journal|last=Dolara|first=Piero|date=2014-07-21|title=Occurrence, exposure, effects, recommended intake and possible dietary use of selected trace compounds (aluminium, bismuth, cobalt, gold, lithium, nickel, silver)|journal=International Journal of Food Sciences and Nutrition|volume=65|issue=8|pages=911–924|doi=10.3109/09637486.2014.937801|issn=1465-3478|pmid=25045935|s2cid=43779869}}</ref>{{efn|虽然铝本身不致癌,但[[国际癌症研究机构]]特别指出Söderberg铝生产,<ref name=worldcat>{{Cite book|url=https://www.worldcat.org/oclc/11527472|title=Polynuclear aromatic compounds. part 3, Industrial exposures in aluminium production, coal gasification, coke production, and iron and steel founding.|date=1984|publisher=International Agency for Research on Cancer|others=International Agency for Research on Cancer.|isbn=92-832-1534-6|oclc=11527472|pages=51–59|access-date=2021-01-07|||}}</ref>可能是由于暴露于多环芳香烃。<ref>{{Cite journal|last1=Wesdock|first1=J. C.|last2=Arnold|first2=I. M. F.|date=2014|title=Occupational and Environmental Health in the Aluminum Industry|url= |journal=Journal of Occupational and Environmental Medicine|language=en-US|volume=56|issue=5 Suppl|pages=S5–S11|doi=10.1097/JOM.0000000000000071|pmid=24806726|pmc=4131940|issn=1076-2752}}</ref>}}1988年发表的一篇评论说,几乎没有证据表明正常接触铝会对健康成人构成风险,<ref name="gitelman88">{{cite book ||title=Physiology of Aluminum in Man |||work=Aluminum and Health |publisher=CRC Press |year=1988 |isbn=0-8247-8026-4 |page=90 }}</ref>2014年的多元素毒理学审查则未能发现每公斤[[体重]]消耗量不超过 40 毫克/天的铝的有害影响。<ref name="Piero3" />大多数消耗的铝会留在粪便中,进入血液的小部分铝大部分将通过尿液排出。<ref name="atsdr">{{Cite web|url=https://www.atsdr.cdc.gov/phs/phs.asp?id=1076&tid=34|title=ATSDR – Public Health Statement: Aluminum|website=www.atsdr.cdc.gov|language=en|access-date=2018-07-18|||}}</ref>尽管如此,一些铝确实可以通过血脑屏障,并优先留在阿尔茨海默病患者的大脑中。<ref name="xu92">{{cite journal |pmid=1302300|year=1992|last1=Xu|first1=N.|last2=Majidi|first2=V.|last3=Markesbery|first3=W. R.|last4=Ehmann|first4=W. D.|title=Brain aluminum in Alzheimer's disease using an improved GFAAS method|journal=Neurotoxicology|volume=13|issue=4|pages=735–743}}</ref><ref name="yumoto09">{{cite journal
|title=Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer's disease|year=2009
|title=Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer's disease|year=2009
|last1=Yumoto|first1=Sakae|last2=Kakimi|first2=Shigeo|last3=Ohsaki|first3=Akihiro|last4=Ishikawa|first4=Akira
|last1=Yumoto|first1=Sakae|last2=Kakimi|first2=Shigeo|last3=Ohsaki|first3=Akihiro|last4=Ishikawa|first4=Akira
第411行: 第411行:
在1988年{{le|卡姆尔福德水污染事件|Camelford water pollution incident}}期间,[[卡姆尔福德]]的人们的饮用水被[[硫酸铝]]污染了几个星期。2013年对该事件的最终报告得出结论,这不太可能导致长期的健康问题。<ref>{{cite web
在1988年{{le|卡姆尔福德水污染事件|Camelford water pollution incident}}期间,[[卡姆尔福德]]的人们的饮用水被[[硫酸铝]]污染了几个星期。2013年对该事件的最终报告得出结论,这不太可能导致长期的健康问题。<ref>{{cite web
|title=Lowermoor Water Pollution incident 'unlikely' to have caused long term health effects
|title=Lowermoor Water Pollution incident 'unlikely' to have caused long term health effects
|publisher=Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment|date=18 April 2013
|publisher=Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment|date=2013-04-18
|url=https://cot.food.gov.uk/sites/default/files/cot/cotpnlwpirv2.pdf|access-date=21 December 2019|
|url=https://cot.food.gov.uk/sites/default/files/cot/cotpnlwpirv2.pdf|access-date=2019-12-21|
||}}</ref>
||}}</ref>


铝被怀疑是[[阿尔茨海默病]]的可能原因,<ref>{{Cite journal|last=Tomljenovic|first=Lucija|date=2011-03-21|title=Aluminum and Alzheimer's Disease: After a Century of Controversy, Is there a Plausible Link?|url=https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-2010-101494|journal=Journal of Alzheimer's Disease|volume=23|issue=4|pages=567–598|doi=10.3233/JAD-2010-101494|pmid=21157018|access-date=11 June 2021|||}}</ref>但四十多年来对此的研究发现,{{asof|2018|lc=yes}},没有很好的因果关系证据。<ref>{{cite web
铝被怀疑是[[阿尔茨海默病]]的可能原因,<ref>{{Cite journal|last=Tomljenovic|first=Lucija|date=2011-03-21|title=Aluminum and Alzheimer's Disease: After a Century of Controversy, Is there a Plausible Link?|url=https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-2010-101494|journal=Journal of Alzheimer's Disease|volume=23|issue=4|pages=567–598|doi=10.3233/JAD-2010-101494|pmid=21157018|access-date=2021-06-11|||}}</ref>但四十多年来对此的研究发现,{{asof|2018|lc=yes}},没有很好的因果关系证据。<ref>{{cite web
|title=Aluminum and dementia: Is there a link?|date=24 August 2018
|title=Aluminum and dementia: Is there a link?|date=2018-08-24
|publisher=Alzheimer Society Canada
|publisher=Alzheimer Society Canada
|url=https://alzheimer.ca/en/Home/About-dementia/Alzheimer-s-disease/Risk-factors/Aluminum|access-date=21 December 2019|
|url=https://alzheimer.ca/en/Home/About-dementia/Alzheimer-s-disease/Risk-factors/Aluminum|access-date=2019-12-21|
||}}
||}}
</ref><ref>{{Cite journal|last1=Santibáñez|first1=Miguel|last2=Bolumar|first2=Francisco|last3=García|first3=Ana M|date=2007|title=Occupational risk factors in Alzheimer's disease: a review assessing the quality of published epidemiological studies|journal=Occupational and Environmental Medicine|volume=64|issue=11|pages=723–732|doi=10.1136/oem.2006.028209|issn=1351-0711|pmc=2078415|pmid=17525096}}</ref>
</ref><ref>{{Cite journal|last1=Santibáñez|first1=Miguel|last2=Bolumar|first2=Francisco|last3=García|first3=Ana M|date=2007|title=Occupational risk factors in Alzheimer's disease: a review assessing the quality of published epidemiological studies|journal=Occupational and Environmental Medicine|volume=64|issue=11|pages=723–732|doi=10.1136/oem.2006.028209|issn=1351-0711|pmc=2078415|pmid=17525096}}</ref>
第430行: 第430行:
|journal=Neurosci Biobehav Rev|volume=13|issue=1|pages=47–53|doi=10.1016/S0149-7634(89)80051-X|pmid=2671833|s2cid=46507895}}
|journal=Neurosci Biobehav Rev|volume=13|issue=1|pages=47–53|doi=10.1016/S0149-7634(89)80051-X|pmid=2671833|s2cid=46507895}}
</ref>一小部分的人<ref name="BinghamCohrssen2012">{{cite book
</ref>一小部分的人<ref name="BinghamCohrssen2012">{{cite book
||title=Patty's Toxicology, 6 Volume Set|last1=Bingham|first1=Eula|last2=Cohrssen|first2=Barbara|year=2012|publisher=John Wiley & Sons|isbn=978-0-470-41081-3|page=244|access-date=23 July 2018|||}}</ref>接触铝会[[过敏]],并在接触含铝产品后出现发痒的红疹、头痛、肌肉疼痛、关节痛、记忆力差、失眠、抑郁、哮喘、肠易激综合征或其他症状。<ref>{{Cite news
||title=Patty's Toxicology, 6 Volume Set|last1=Bingham|first1=Eula|last2=Cohrssen|first2=Barbara|year=2012|publisher=John Wiley & Sons|isbn=978-0-470-41081-3|page=244|access-date=2018-07-23|||}}</ref>接触铝会[[过敏]],并在接触含铝产品后出现发痒的红疹、头痛、肌肉疼痛、关节痛、记忆力差、失眠、抑郁、哮喘、肠易激综合征或其他症状。<ref>{{Cite news
|url=https://allergy-symptoms.org/aluminum-allergy/|title=Aluminum Allergy Symptoms and Diagnosis|date=2016-09-20|work=Allergy-symptoms.org|access-date=2018-07-23
|url=https://allergy-symptoms.org/aluminum-allergy/|title=Aluminum Allergy Symptoms and Diagnosis|date=2016-09-20|work=Allergy-symptoms.org|access-date=2018-07-23
|language=en-US|||}}</ref>
|language=en-US|||}}</ref>


接触铝粉或铝焊接的烟雾会导致[[肺纤维化]]。<ref>{{Cite journal|last1=al-Masalkhi|first1=A.|last2=Walton|first2=S.P.|date=1994|title=Pulmonary fibrosis and occupational exposure to aluminum|journal=The Journal of the Kentucky Medical Association|volume=92|issue=2|pages=59–61|issn=0023-0294|pmid=8163901}}</ref>细铝粉会燃烧或爆炸,构成另一种工作场所的危险。<ref>{{cite web|url=https://www.cdc.gov/niosh/npg/npgd0022.html|title=CDC – NIOSH Pocket Guide to Chemical Hazards – Aluminum|website=www.cdc.gov||||access-date=11 June 2015}}</ref><ref>{{cite web|url=https://www.cdc.gov/niosh/npg/npgd0023.html|title=CDC – NIOSH Pocket Guide to Chemical Hazards – Aluminum (pyro powders and welding fumes, as Al)|website=www.cdc.gov||||access-date=11 June 2015}}</ref>
接触铝粉或铝焊接的烟雾会导致[[肺纤维化]]。<ref>{{Cite journal|last1=al-Masalkhi|first1=A.|last2=Walton|first2=S.P.|date=1994|title=Pulmonary fibrosis and occupational exposure to aluminum|journal=The Journal of the Kentucky Medical Association|volume=92|issue=2|pages=59–61|issn=0023-0294|pmid=8163901}}</ref>细铝粉会燃烧或爆炸,构成另一种工作场所的危险。<ref>{{cite web|url=https://www.cdc.gov/niosh/npg/npgd0022.html|title=CDC – NIOSH Pocket Guide to Chemical Hazards – Aluminum|website=www.cdc.gov||||access-date=2015-06-11}}</ref><ref>{{cite web|url=https://www.cdc.gov/niosh/npg/npgd0023.html|title=CDC – NIOSH Pocket Guide to Chemical Hazards – Aluminum (pyro powders and welding fumes, as Al)|website=www.cdc.gov||||access-date=2015-06-11}}</ref>


=== 接触途径 ===
=== 接触途径 ===
食物是铝的主要来源。饮用水比固体食物含有更多的铝。<ref name="Piero3"/>然而,食物中的铝可能比从水中吸收的铝更多。<ref name="Yokel2008">{{cite journal|author=Yokel R.A.|author2=Hicks C.L.|author3=Florence R.L.|date=2008|title=Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese|journal=[[Food and Chemical Toxicology]]|volume=46|issue=6|pages=2261–2266|doi=10.1016/j.fct.2008.03.004|pmc=2449821|pmid=18436363}}</ref>人类口服铝的主要来源包括食物(由于其用于食品添加剂、食品和饮料包装以及炊具)、饮用水(由于其用于市政水处理)和含铝药物(特别是抗酸药、抗溃疡和缓冲阿司匹林制剂)。<ref>{{Cite report|author=[[United States Department of Health and Human Services]]|url=http://abcmt.org/tp22.pdf|title=Toxicological profile for aluminum|date=1999|access-date=2018-08-03|||}}</ref>欧洲人铝的膳食暴露平均为 0.2–1.5 毫克/公斤/周,但可能高达 2.3 毫克/公斤/周。<ref name="Piero3"/>较高的铝暴露水平主要限于矿工、铝生产工人和[[透析]]患者。<ref name="enviroliteracy">{{Cite news|url=https://enviroliteracy.org/special-features/its-element-ary/aluminum/|title=Aluminum|work=The Environmental Literacy Council|access-date=2018-07-29|language=en-US|||}}</ref>
食物是铝的主要来源。饮用水比固体食物含有更多的铝。<ref name="Piero3"/>然而,食物中的铝可能比从水中吸收的铝更多。<ref name="Yokel2008">{{cite journal|author=Yokel R.A.|author2=Hicks C.L.|author3=Florence R.L.|date=2008|title=Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese|journal=[[Food and Chemical Toxicology]]|volume=46|issue=6|pages=2261–2266|doi=10.1016/j.fct.2008.03.004|pmc=2449821|pmid=18436363}}</ref>人类口服铝的主要来源包括食物(由于其用于食品添加剂、食品和饮料包装以及炊具)、饮用水(由于其用于市政水处理)和含铝药物(特别是抗酸药、抗溃疡和缓冲阿司匹林制剂)。<ref>{{Cite report|author=[[United States Department of Health and Human Services]]|url=http://abcmt.org/tp22.pdf|title=Toxicological profile for aluminum|date=1999|access-date=2018-08-03|||}}</ref>欧洲人铝的膳食暴露平均为 0.2–1.5 毫克/公斤/周,但可能高达 2.3 毫克/公斤/周。<ref name="Piero3"/>较高的铝暴露水平主要限于矿工、铝生产工人和[[透析]]患者。<ref name="enviroliteracy">{{Cite news|url=https://enviroliteracy.org/special-features/its-element-ary/aluminum/|title=Aluminum|work=The Environmental Literacy Council|access-date=2018-07-29|language=en-US|||}}</ref>


[[抗酸药]]、止汗剂、[[疫苗]]和化妆品的消费提供了可能的铝接触途径。<ref name="ChenThyssen2018">{{cite book||title=Metal Allergy: From Dermatitis to Implant and Device Failure|last1=Chen|first1=Jennifer K.|last2=Thyssen|first2=Jacob P.|publisher=Springer|year=2018|isbn=978-3-319-58503-1|page=333|access-date=23 July 2018|||}}</ref>食用含铝的酸性食物或液体可增强铝的吸收<ref>{{cite journal|author=Slanina, P.|last2=French|first2=W.|last3=Ekström|first3=L.G.|last4=Lööf|first4=L.|last5=Slorach|first5=S.|last6=Cedergren|first6=A.|date=1986|title=Dietary citric acid enhances absorption of aluminum in antacids||journal=Clinical Chemistry|volume=32|issue=3|pages=539–541|pmid=3948402|doi=10.1093/clinchem/32.3.539}}</ref>,而[[麦芽酚]]已被证明可以增加铝在神经和骨组织中的积累。<ref>{{cite journal|last1=Van Ginkel|first1=M.F.|last2=Van Der Voet|first2=G.B.|last3=D'haese|first3=P.C.|last4=De Broe|first4=M.E.|last5=De Wolff|first5=F.A.|date=1993|title=Effect of citric acid and maltol on the accumulation of aluminum in rat brain and bone|journal=The Journal of Laboratory and Clinical Medicine|volume=121|issue=3|pages=453–460|pmid=8445293}}</ref>
[[抗酸药]]、止汗剂、[[疫苗]]和化妆品的消费提供了可能的铝接触途径。<ref name="ChenThyssen2018">{{cite book||title=Metal Allergy: From Dermatitis to Implant and Device Failure|last1=Chen|first1=Jennifer K.|last2=Thyssen|first2=Jacob P.|publisher=Springer|year=2018|isbn=978-3-319-58503-1|page=333|access-date=2018-07-23|||}}</ref>食用含铝的酸性食物或液体可增强铝的吸收<ref>{{cite journal|author=Slanina, P.|last2=French|first2=W.|last3=Ekström|first3=L.G.|last4=Lööf|first4=L.|last5=Slorach|first5=S.|last6=Cedergren|first6=A.|date=1986|title=Dietary citric acid enhances absorption of aluminum in antacids||journal=Clinical Chemistry|volume=32|issue=3|pages=539–541|pmid=3948402|doi=10.1093/clinchem/32.3.539}}</ref>,而[[麦芽酚]]已被证明可以增加铝在神经和骨组织中的积累。<ref>{{cite journal|last1=Van Ginkel|first1=M.F.|last2=Van Der Voet|first2=G.B.|last3=D'haese|first3=P.C.|last4=De Broe|first4=M.E.|last5=De Wolff|first5=F.A.|date=1993|title=Effect of citric acid and maltol on the accumulation of aluminum in rat brain and bone|journal=The Journal of Laboratory and Clinical Medicine|volume=121|issue=3|pages=453–460|pmid=8445293}}</ref>


=== 治疗 ===
=== 治疗 ===
第450行: 第450行:
酸性[[沉淀]]是从天然来源中调动铝的主要自然因素<ref name="Piero3"/>,也是铝对环境产生影响的主要原因。<ref name="RosselandEldhuset1990">{{cite journal|last1=Rosseland|first1=B.O.|last2=Eldhuset|first2=T.D.|last3=Staurnes|first3=M.|year=1990|title=Environmental effects of aluminium|journal=Environmental Geochemistry and Health|volume=12|issue=1–2|pages=17–27|doi=10.1007/BF01734045|pmid=24202562|s2cid=23714684|issn=0269-4042}}</ref>然而,盐水和淡水中铝存在的主要因素是工业过程将铝释放到空气中。<ref name="Piero3"/>
酸性[[沉淀]]是从天然来源中调动铝的主要自然因素<ref name="Piero3"/>,也是铝对环境产生影响的主要原因。<ref name="RosselandEldhuset1990">{{cite journal|last1=Rosseland|first1=B.O.|last2=Eldhuset|first2=T.D.|last3=Staurnes|first3=M.|year=1990|title=Environmental effects of aluminium|journal=Environmental Geochemistry and Health|volume=12|issue=1–2|pages=17–27|doi=10.1007/BF01734045|pmid=24202562|s2cid=23714684|issn=0269-4042}}</ref>然而,盐水和淡水中铝存在的主要因素是工业过程将铝释放到空气中。<ref name="Piero3"/>


当水呈酸性时,铝会成为用[[鳃]]呼吸的动物(如[[鱼]])的毒剂,其中铝可能会沉淀在鳃上,<ref>{{Cite journal|last1=Baker|first1=Joan P.|last2=Schofield|first2=Carl L.|date=1982|title=Aluminum toxicity to fish in acidic waters|url=http://link.springer.com/10.1007/BF02419419|journal=Water, Air, and Soil Pollution|language=en|volume=18|issue=1–3|pages=289–309|doi=10.1007/BF02419419|bibcode=1982WASP...18..289B|s2cid=98363768|issn=0049-6979|access-date=27 December 2020|||}}</ref>这会导致[[血浆]]和[[血淋巴]]离子的损失,从而导致{{le|渗透调节|Osmoregulation}}失败。<ref name="RosselandEldhuset1990" />铝的有机配合物可能很容易被吸收,并干扰哺乳动物和鸟类的新陈代谢,尽管这实际上很少发生。<ref name="RosselandEldhuset1990" />
当水呈酸性时,铝会成为用[[鳃]]呼吸的动物(如[[鱼]])的毒剂,其中铝可能会沉淀在鳃上,<ref>{{Cite journal|last1=Baker|first1=Joan P.|last2=Schofield|first2=Carl L.|date=1982|title=Aluminum toxicity to fish in acidic waters|url=http://link.springer.com/10.1007/BF02419419|journal=Water, Air, and Soil Pollution|language=en|volume=18|issue=1–3|pages=289–309|doi=10.1007/BF02419419|bibcode=1982WASP...18..289B|s2cid=98363768|issn=0049-6979|access-date=2020-12-27|||}}</ref>这会导致[[血浆]]和[[血淋巴]]离子的损失,从而导致{{le|渗透调节|Osmoregulation}}失败。<ref name="RosselandEldhuset1990" />铝的有机配合物可能很容易被吸收,并干扰哺乳动物和鸟类的新陈代谢,尽管这实际上很少发生。<ref name="RosselandEldhuset1990" />


虽然铝在[[pH值]]中性土壤中难溶并且对植物一般是无害的,但它在[[酸性]]土壤中是减缓植物生长的首要因素。在酸性土壤中,Al<sup>3+</sup>[[阳离子]]浓度会升高,并影响植物的根部生长和功能。<ref>{{cite journal
虽然铝在[[pH值]]中性土壤中难溶并且对植物一般是无害的,但它在[[酸性]]土壤中是减缓植物生长的首要因素。在酸性土壤中,Al<sup>3+</sup>[[阳离子]]浓度会升高,并影响植物的根部生长和功能。<ref>{{cite journal
第509行: 第509行:
铝在生产过程的每一步都对环境是挑战。它的主要挑战是[[温室气体排放]]。<ref name="enviroliteracy" />这些气体来自冶炼厂的电力消耗和加工副产品。其中,最持久的是来自冶炼过程的[[碳氟化合物]]。<ref name="enviroliteracy" />它产生的[[二氧化硫]]是[[酸雨]]的主要前体之一。<ref name="enviroliteracy" />
铝在生产过程的每一步都对环境是挑战。它的主要挑战是[[温室气体排放]]。<ref name="enviroliteracy" />这些气体来自冶炼厂的电力消耗和加工副产品。其中,最持久的是来自冶炼过程的[[碳氟化合物]]。<ref name="enviroliteracy" />它产生的[[二氧化硫]]是[[酸雨]]的主要前体之一。<ref name="enviroliteracy" />


一份来自2001年的西班牙科学报告声称真菌[[白地黴]]会消耗[[光碟]]中的铝。<ref>{{cite news|url=http://news.bbc.co.uk/2/hi/science/nature/1402533.stm |title=Fungus 'eats' CDs |date=22 June 2001 |publisher=BBC |||}}</ref><ref>{{Cite journal|doi=10.1038/news010628-11 |author=Bosch, Xavier |title=Fungus eats CD |date=27 June 2001 |journal=Nature |pages=news010628–11 |url=http://www.nature.com/news/2001/010627/full/news010628-11.html |||}}</ref>其他报告都参考了该报告,并且没有支持原始研究。 更好的记录表明,细菌[[铜绿假单胞菌]]和真菌[[枝孢菌]]通常在使用[[煤油]]燃料(不是[[航空汽油]])的飞机油箱中检测到。实验室的培养物可以降解铝。<ref>{{cite journal
一份来自2001年的西班牙科学报告声称真菌[[白地黴]]会消耗[[光碟]]中的铝。<ref>{{cite news|url=http://news.bbc.co.uk/2/hi/science/nature/1402533.stm |title=Fungus 'eats' CDs |date=2001-06-22 |publisher=BBC |||}}</ref><ref>{{Cite journal|doi=10.1038/news010628-11 |author=Bosch, Xavier |title=Fungus eats CD |date=2001-06-27 |journal=Nature |pages=news010628–11 |url=http://www.nature.com/news/2001/010627/full/news010628-11.html |||}}</ref>其他报告都参考了该报告,并且没有支持原始研究。 更好的记录表明,细菌[[铜绿假单胞菌]]和真菌[[枝孢菌]]通常在使用[[煤油]]燃料(不是[[航空汽油]])的飞机油箱中检测到。实验室的培养物可以降解铝。<ref>{{cite journal
|url=http://nzetc.victoria.ac.nz/tm/scholarly/tei-Bio19Tuat01-t1-body-d4.html |journal=Tuatara |title=Studies on the 'Kerosene Fungus' ''Cladosporium resinae'' (Lindau) De Vries: Part I. The Problem of Microbial Contamination of Aviation Fuels |page=29 |author1=Sheridan, J.E. |author2=Nelson, Jan |author3=Tan, Y.L. |volume=19 |issue=1 |||}}</ref>然而,这些生命形式不会直接攻击或消耗铝;相反,金属铝会被微生物的废物腐蚀。<ref>{{cite web|publisher=Duncan Aviation |title=Fuel System Contamination & Starvation |date=2011 |url=http://www.duncanaviation.aero/intelligence/201102/fuel_starvation_system_contamination.php |||}}</ref>
|url=http://nzetc.victoria.ac.nz/tm/scholarly/tei-Bio19Tuat01-t1-body-d4.html |journal=Tuatara |title=Studies on the 'Kerosene Fungus' ''Cladosporium resinae'' (Lindau) De Vries: Part I. The Problem of Microbial Contamination of Aviation Fuels |page=29 |author1=Sheridan, J.E. |author2=Nelson, Jan |author3=Tan, Y.L. |volume=19 |issue=1 |||}}</ref>然而,这些生命形式不会直接攻击或消耗铝;相反,金属铝会被微生物的废物腐蚀。<ref>{{cite web|publisher=Duncan Aviation |title=Fuel System Contamination & Starvation |date=2011 |url=http://www.duncanaviation.aero/intelligence/201102/fuel_starvation_system_contamination.php |||}}</ref>