锕:修订间差异

求闻百科,共笔求闻
添加的内容 删除的内容
(移除无用链接)
(我来啦, replaced: 員 → 员, 內 → 内 (7), 貴 → 贵 (2), 連結 → 链接, 參考 → 参考, 國 → 国 (4), 開 → 开, 學 → 学 (25), 參 → 参, 會 → 会 (22), 長 → 长, 與 → 与 (19), 礦 → 矿 (10), 間 → 间 (6), 導 → 导, 語 → 语, 專業 → 专业, 無 → 无 (6), 盡 → 尽, 構 → 构 (5), 關 → 关 (3), 檢 → 检, 將 → 将 (6), 調 → 调, 應 → 应 (25), 來 → 来 (10), 喬 → 乔, 對 → 对 (10), 動 → 动, 爾 → 尔 (10), 發 → 发 (14), 門 → 门, 願 → 愿, 極 → 极 (2), 樣 → 样 (5), 號 → 号 (3), 體 → 体 (18), 類 → 类 (2), 線 → 线 (7), 簡 → 简, 稱 → 称 (2), 為 → 为 (27), 於 → 于 (24), 亞 → 亚, 種 → 种 (11), 數 → 数 (12), 據 → 据 (3), 屬 → 属 (11), 術 → 术,…)
标签消歧义链接
第8行: 第8行:
|above=[[鑭]]
|above=[[鑭]]
|below=(Ute)
|below=(Ute)
|series=錒系金
|series=錒系金
|series comment=有時歸為[[渡金]]
|series comment=有时归为[[渡金]]
|group=3
|group=3
|period=7
|period=7
第15行: 第15行:
|series color=ff99cc
|series color=ff99cc
|phase color=
|phase color=
|appearance=白色,光<ref>{{cite web |url=http://pubs.acs.org/cen/80th/actinium.html |title=C&EN: It's Elemental: The Periodic Table - Actinium |author=Wall, Greg |date=2003-09-08 |work=C&EN: It's Elemental: The Periodic Table |publisher=Chemical and Engineering News |accessdate=2013-12-16 |||}}</ref>
|appearance=白色,光<ref>{{cite web |url=http://pubs.acs.org/cen/80th/actinium.html |title=C&EN: It's Elemental: The Periodic Table - Actinium |author=Wall, Greg |date=2003-09-08 |work=C&EN: It's Elemental: The Periodic Table |publisher=Chemical and Engineering News |accessdate=2013-12-16 |||}}</ref>
|image name=Actinium_sample_(31481701837).png
|image name=Actinium_sample_(31481701837).png
|image name comment=
|image name comment=
第26行: 第26行:
|electrons per shell=2, 8, 18, 32, 18, 9, 2
|electrons per shell=2, 8, 18, 32, 18, 9, 2
|color=
|color=
|phase=固
|phase=固
|phase comment=
|phase comment=
|density gplstp=
|density gplstp=
|density gpcm3nrt=10
|density gpcm3nrt=10
|melting point K=(大)1323
|melting point K=(大)1323
|melting point C=1050
|melting point C=1050
|melting point F=1922
|melting point F=1922
第60行: 第60行:
|covalent radius=215
|covalent radius=215
|Van der Waals radius=
|Van der Waals radius=
|magnetic ordering=無數據
|magnetic ordering=无数据
|electrical resistivity=
|electrical resistivity=
|electrical resistivity at 0=
|electrical resistivity at 0=
第83行: 第83行:
{{Elementbox_isotopes_decay | mn=225 | sym=Ac
{{Elementbox_isotopes_decay | mn=225 | sym=Ac
| na=[[放射性同位素|微量]] | hl=10天
| na=[[放射性同位素|微量]] | hl=10天
| dm1={{衰|α}} | de1=5.935 | pn1=221 | ps1=francium }}
| dm1={{衰|α}} | de1=5.935 | pn1=221 | ps1=francium }}
{{Elementbox_isotopes_decay | mn=226 | sym=Ac
{{Elementbox_isotopes_decay | mn=226 | sym=Ac
| na=[[放射性同位素|人造]] | hl=29.37小
| na=[[放射性同位素|人造]] | hl=29.37小
| dm1={{衰|β-}} | de1=1.117 | pn1=226 | ps1=釷
| dm1={{衰|β-}} | de1=1.117 | pn1=226 | ps1=釷
| dm2={{衰|子捕}} | de2=0.640 | pn2=226 | ps2=鐳
| dm2={{衰|子捕}} | de2=0.640 | pn2=226 | ps2=鐳
| dm3={{衰|α}} | de3=5.536 | pn3=222 | ps3=鍅 }}
| dm3={{衰|α}} | de3=5.536 | pn3=222 | ps3=鍅 }}
{{Elementbox_isotopes_decay | mn=227 | sym=Ac
{{Elementbox_isotopes_decay | mn=227 | sym=Ac
| na=[[放射性同位素|微量]] | hl=21.772年
| na=[[放射性同位素|微量]] | hl=21.772年
| dm1={{衰|β-}} | de1=0.045 | pn1=227 | ps1=釷
| dm1={{衰|β-}} | de1=0.045 | pn1=227 | ps1=釷
| dm2={{衰|α}} | de2=5.042 | pn2=223 | ps2=鍅 }}
| dm2={{衰|α}} | de2=5.042 | pn2=223 | ps2=鍅 }}
|isotopes comment=
|isotopes comment=
|discovered by=[[安德烈-路易·德比埃爾內]]、{{tsl|en|Friedrich Oskar Giesel|弗里德里希·斯卡·吉塞}}
|discovered by=[[安德烈-路易·德比埃尔内]]、{{tsl|en|Friedrich Oskar Giesel|弗里德里希·斯卡·吉塞}}
|discovery date=1899、1902
|discovery date=1899、1902
|first isolation by=安德烈-路易·德比埃爾內、弗里德里希·斯卡·吉塞
|first isolation by=安德烈-路易·德比埃尔内、弗里德里希·斯卡·吉塞
|first isolation date=1899、1902
|first isolation date=1899、1902
}}
}}
'''錒'''({{音|拼音=ā|注音=ㄚ|粵拼=aa3|同音字=}};{{lang-en|'''Actinium'''}}),是一[[化元素]],其[[化]]为'''{{化式|錒}}''',[[原子序]]为89,位居[[錒系元素]]之首。在[[元素期表]]中,錒系元素始錒,止[[鐒]],一共有15元素。錒是一柔軟的白色[[金]],具[[放射性]]。在空中,錒迅速[[氧]]和[[水]]反,在表面形成具保性的白色氧化。和大部份[[鑭系元素]]及錒系元素一,錒的[[氧化]]一般是+3。
'''錒'''({{音|拼音=ā|注音=ㄚ|粵拼=aa3|同音字=}};{{lang-en|'''Actinium'''}}),是一[[化元素]],其[[化]]为'''{{化式|錒}}''',[[原子序]]为89,位居[[錒系元素]]之首。在[[元素期表]]中,錒系元素始錒,止[[鐒]],一共有15元素。錒是一柔軟的白色[[金]],具[[放射性]]。在空中,錒迅速[[氧]]和[[水]]反,在表面形成具保性的白色氧化。和大部份[[鑭系元素]]及錒系元素一,錒的[[氧化]]一般是+3。


錒在1899年被發現,是首得到分的非原始核素({{lang|en|non-primordial radioactive element}})。然[[釙]]、[[鐳]]和[[氡]]比錒更早被發現,但是科家到1902年才分些元素。
錒在1899年被发现,是首得到分的非原始核素({{lang|en|non-primordial radioactive element}})。然[[釙]]、[[鐳]]和[[氡]]比錒更早被发现,但是科家到1902年才分些元素。


錒具有高度的放射性,最定的同位素是<sup>227</sup>Ac,會進行[[β衰]],[[半衰期]]21.772年。由缺乏長壽命的同位素,在自然界中只有痕量的錒出在[[鈾]]中,以<sup>227</sup>Ac主。每一[[公|]]鈾含0.2毫克的錒元素。由錒和[[鑭]]的化和物理特性過於接近,因此要從礦石中分出錒元素現實。科是在[[核反應爐]]中以中子照射[[鐳]]-226錒的。
錒具有高度的放射性,最定的同位素是<sup>227</sup>Ac,会进行[[β衰]],[[半衰期]]21.772年。由缺乏长寿命的同位素,在自然界中只有痕量的錒出在[[鈾]]中,以<sup>227</sup>Ac主。每一[[公|]]鈾含0.2毫克的錒元素。由錒和[[鑭]]的化和物理特性过于接近,因此要从矿石中分出錒元素现实。科是在[[核反应炉]]中以中子照射[[鐳]]-226錒的。


錒因稀少、昂,且具放射性,所以沒有大的工用途。目前錒被用作中子源,以及在[[放射線療法]]中作為輻射源。
錒因稀少、昂,且具放射性,所以沒有大的工用途。目前錒被用作中子源,以及在[[放射线疗法]]中作为辐射源。


== 史 ==
== 史 ==
[[法]]化家[[安德烈-路易·德貝爾恩]](André-Louis Debierne)在1899年宣佈發現新元素。在[[莉·居]]和[[皮埃·居]][[瀝青鈾]]中分出[[鐳]]之,德貝爾恩接著殘留物中再分一新元素。他認為該元素[[鈦]]和[[釷]]相似,並將其命名為「actinium」。<ref>{{cite journal |title = Sur un nouvelle matière radio-active |first = André-Louis |last = Debierne |journal = Comptes rendus |volume = 129 |pages = 593–595 |year = 1899 |url = http://gallica.bnf.fr/ark:/12148/bpt6k3085b/f593.table |accessdate = 2013-12-16 |||}}</ref><ref>{{cite journal |title = Sur un nouvelle matière radio-actif – l'actinium |first = André-Louis |last = Debierne |journal = Comptes rendus |volume = 130 |pages = 906–908 |year = 1900–1901 |url = http://gallica.bnf.fr/ark:/12148/bpt6k3086n/f906.table |accessdate = 2013-12-16 |||}}</ref>[[德]]化家[[弗裡德里希·斯卡·吉塞]](Friedrich Oskar Giesel)在1902年發現了錒元素。<ref>{{cite journal |title = Ueber Radium und radioactive Stoffe |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 35 |issue = 3 |pages = 3608–3611 |year = 1902 |doi = 10.1002/cber.190203503187}}</ref>他認為[[鑭]]相似,在1904年其命名為「emanium」。<ref>{{cite journal |title = Ueber den Emanationskörper (Emanium) |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 37 |issue = 2 |pages = 1696–1699 |year = 1904 |doi = 10.1002/cber.19040370280}}</ref>科家在比貝爾恩所得出的半衰期數據後,<ref>{{cite journal |title = Sur l'actinium |first = André-Louis |last = Debierne |journal = Comptes rendus |volume = 139 |pages = 538–540 |year = 1904}}</ref>決定依最早發現者的意元素正式定名為「actinium」。<ref>{{cite journal |title = Ueber Emanium |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 37 |issue = 2 |pages = 1696–1699 |year = 1904 |doi = 10.1002/cber.19040370280}}</ref><ref>{{cite journal |title = Ueber Emanium |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 38 |issue = 1 |pages = 775–778 |year = 1905 |doi = 10.1002/cber.190503801130}}</ref>
[[法]]化家[[安德烈-路易·德贝尔恩]](André-Louis Debierne)在1899年宣布发现新元素。在[[莉·居]]和[[皮埃·居]][[瀝青鈾]]中分出[[鐳]]之,德贝尔恩接著殘留物中再分一新元素。他认为该元素[[鈦]]和[[釷]]相似,并将其命名为“actinium”。<ref>{{cite journal |title = Sur un nouvelle matière radio-active |first = André-Louis |last = Debierne |journal = Comptes rendus |volume = 129 |pages = 593–595 |year = 1899 |url = http://gallica.bnf.fr/ark:/12148/bpt6k3085b/f593.table |accessdate = 2013-12-16 |||}}</ref><ref>{{cite journal |title = Sur un nouvelle matière radio-actif – l'actinium |first = André-Louis |last = Debierne |journal = Comptes rendus |volume = 130 |pages = 906–908 |year = 1900–1901 |url = http://gallica.bnf.fr/ark:/12148/bpt6k3086n/f906.table |accessdate = 2013-12-16 |||}}</ref>[[德]]化家[[弗裡德里希·斯卡·吉塞]](Friedrich Oskar Giesel)在1902年发现了錒元素。<ref>{{cite journal |title = Ueber Radium und radioactive Stoffe |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 35 |issue = 3 |pages = 3608–3611 |year = 1902 |doi = 10.1002/cber.190203503187}}</ref>他认为[[鑭]]相似,在1904年其命名为“emanium”。<ref>{{cite journal |title = Ueber den Emanationskörper (Emanium) |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 37 |issue = 2 |pages = 1696–1699 |year = 1904 |doi = 10.1002/cber.19040370280}}</ref>科家在比贝尔恩所得出的半衰期数据后,<ref>{{cite journal |title = Sur l'actinium |first = André-Louis |last = Debierne |journal = Comptes rendus |volume = 139 |pages = 538–540 |year = 1904}}</ref>決定依最早发现者的意元素正式定名为“actinium”。<ref>{{cite journal |title = Ueber Emanium |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 37 |issue = 2 |pages = 1696–1699 |year = 1904 |doi = 10.1002/cber.19040370280}}</ref><ref>{{cite journal |title = Ueber Emanium |first = Friedrich Oskar |last = Giesel |journal = Berichte der Deutschen Chemische Geselschaft |volume = 38 |issue = 1 |pages = 775–778 |year = 1905 |doi = 10.1002/cber.190503801130}}</ref>


<!--發現爭議Articles published in the 1970s<ref>{{cite journal |title = The Discovery of Actinium |first = Harold W. |last = Kirby |journal = Isis |volume = 62 |issue = 3 |pages = 290–308 |year = 1971 |jstor=229943 |doi =10.1086/350760}}</ref> and later<ref name="Adloff">{{cite journal |title = The centenary of a controversial discovery: actinium |first = J. P. |last = Adloff |journal = Radiochim. Acta |volume = 88 |pages = 123–128 |year = 2000 |doi = 10.1524/ract.2000.88.3-4.123 |issue = 3–4_2000}}</ref> suggest that Debierne's results published in 1904 conflict with those reported in 1899 and 1900. This has led some authors to advocate that Giesel alone should be credited with the discovery.<ref>{{cite journal |last1 = Kirby |first1 = Harold W. |last2 = Morss |first2 = Lester R. |title = The Chemistry of the Actinide and Transactinide Elements |pages = 18 |year = 2006 |doi = 10.1007/1-4020-3598-5_2 |chapter = Actinium |isbn = 978-1-4020-3555-5}}</ref> A less confrontational vision of scientific discovery is proposed by Adloff.<ref name="Adloff" /> He suggests that hindsight criticism of the early publications should be mitigated by the nascent state of radiochemistry, highlights the prudence of Debierne's claims in the original papers, and notes that nobody can contend that Debierne's substance did not contain actinium. Debierne, who is now considered by the vast majority of historians as the discoverer, lost interest in the element and left the topic. Giesel, on the other hand, can rightfully be credited with the first preparation of radiochemically pure actinium and with the identification of its atomic number 89.
<!--发现争议Articles published in the 1970s<ref>{{cite journal |title = The Discovery of Actinium |first = Harold W. |last = Kirby |journal = Isis |volume = 62 |issue = 3 |pages = 290–308 |year = 1971 |jstor=229943 |doi =10.1086/350760}}</ref> and later<ref name="Adloff">{{cite journal |title = The centenary of a controversial discovery: actinium |first = J. P. |last = Adloff |journal = Radiochim. Acta |volume = 88 |pages = 123–128 |year = 2000 |doi = 10.1524/ract.2000.88.3-4.123 |issue = 3–4_2000}}</ref> suggest that Debierne's results published in 1904 conflict with those reported in 1899 and 1900. This has led some authors to advocate that Giesel alone should be credited with the discovery.<ref>{{cite journal |last1 = Kirby |first1 = Harold W. |last2 = Morss |first2 = Lester R. |title = The Chemistry of the Actinide and Transactinide Elements |pages = 18 |year = 2006 |doi = 10.1007/1-4020-3598-5_2 |chapter = Actinium |isbn = 978-1-4020-3555-5}}</ref> A less confrontational vision of scientific discovery is proposed by Adloff.<ref name="Adloff" /> He suggests that hindsight criticism of the early publications should be mitigated by the nascent state of radiochemistry, highlights the prudence of Debierne's claims in the original papers, and notes that nobody can contend that Debierne's substance did not contain actinium. Debierne, who is now considered by the vast majority of historians as the discoverer, lost interest in the element and left the topic. Giesel, on the other hand, can rightfully be credited with the first preparation of radiochemically pure actinium and with the identification of its atomic number 89.
-->
-->
錒的原文名稱「actinium」源自[[古希臘語]]中的「ακτίς」「ακτίνος」(「aktis」「aktinos」),。<ref name="CRC" />其[[化]]Ac,但Ac也同是其他化品的縮寫,如[[乙酰基]]、[[乙酸鹽]]<ref>{{cite book |author1=Gilley, Cynthia Brooke |author2=University of California, San Diego. Chemistry |title=New convertible isocyanides for the Ugi reaction; application to the stereoselective synthesis of omuralide |url=http://books.google.com/books?id=vJQPInUTy3QC&pg=PR11 |accessdate=2013-12-16 |year=2008 |publisher=ProQuest |isbn=978-0-549-79554-4 |page=11 |||}}</ref>和[[乙醛]],但錒與這並無關係。<ref>{{cite book |author=Reimers, Jeffrey R. |title=Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology |url=http://books.google.com/books?id=Ca9z4_cH-W8C&pg=PA575 |accessdate=2013-12-16 |date=2011-07-20 |publisher=John Wiley and Sons |isbn=978-0-470-48788-4 |page=575 |||}}</ref>
錒的原文名称“actinium”源自[[古希腊语]]中的“ακτίς”“ακτίνος”(“aktis”“aktinos”),线。<ref name="CRC" />其[[化]]Ac,但Ac也同是其他化品的缩写,如[[乙酰基]]、[[乙酸鹽]]<ref>{{cite book |author1=Gilley, Cynthia Brooke |author2=University of California, San Diego. Chemistry |title=New convertible isocyanides for the Ugi reaction; application to the stereoselective synthesis of omuralide |url=http://books.google.com/books?id=vJQPInUTy3QC&pg=PR11 |accessdate=2013-12-16 |year=2008 |publisher=ProQuest |isbn=978-0-549-79554-4 |page=11 |||}}</ref>和[[乙醛]],但錒与这并无关系。<ref>{{cite book |author=Reimers, Jeffrey R. |title=Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology |url=http://books.google.com/books?id=Ca9z4_cH-W8C&pg=PA575 |accessdate=2013-12-16 |date=2011-07-20 |publisher=John Wiley and Sons |isbn=978-0-470-48788-4 |page=575 |||}}</ref>


== 性 ==
== 性 ==
錒是一柔軟的白色<ref name="blueglow" /><ref name="brit">''Actinium'', in Encyclopædia Britannica, 15th edition, 1995, p. 70</ref>[[放射性]][[金]]。其[[剪切模量]]估計與[[鉛]]相近。<ref>Frederick Seitz, David Turnbull [http://books.google.com/books?id=F9V3a-0V3r8C&pg=PA289 Solid state physics: advances in research and applications] , Academic Press, 1964 ISBN 978-0-12-607716-2 pp. 289–291</ref>錒的放射性很,它放射出的高能粒子足以把四周的空[[電離]],因而出暗色光。<ref>{{cite book |author=Richard A. Muller |title=Physics and Technology for Future Presidents: An Introduction to the Essential Physics Every World Leader Needs to Know |url=http://books.google.com/books?id=jMWCDsJesbcC&pg=PA136 |accessdate=2013-12-16 |date=2010-04-12 |publisher=Princeton University Press |isbn=978-0-691-13504-5 |page=136 |||}}</ref>錒的化學屬包括[[鑭]]在的鑭系元素相近,因此要石中分十分困。分離過程一般使用溶萃取法和[[析法]]。<ref>{{cite journal |title = Chemistry of the Actinide Elements Annual Review of Nuclear Science |volume = 1 |pages = 245–262 |year = 1952 |first = J. J. |last = Katz |doi = 10.1146/annurev.ns.01.120152.001333 |journal = Annual Review of Nuclear Science |last2 = Manning |first2 = W M |bibcode = 1952ARNPS...1..245K}}</ref>
錒是一柔軟的白色<ref name="blueglow" /><ref name="brit">''Actinium'', in Encyclopædia Britannica, 15th edition, 1995, p. 70</ref>[[放射性]][[金]]。其[[剪切模量]]估计与[[鉛]]相近。<ref>Frederick Seitz, David Turnbull [http://books.google.com/books?id=F9V3a-0V3r8C&pg=PA289 Solid state physics: advances in research and applications] , Academic Press, 1964 ISBN 978-0-12-607716-2 pp. 289–291</ref>錒的放射性很,它放射出的高能粒子足以把四周的空[[电离]],因而出暗色光。<ref>{{cite book |author=Richard A. Muller |title=Physics and Technology for Future Presidents: An Introduction to the Essential Physics Every World Leader Needs to Know |url=http://books.google.com/books?id=jMWCDsJesbcC&pg=PA136 |accessdate=2013-12-16 |date=2010-04-12 |publisher=Princeton University Press |isbn=978-0-691-13504-5 |page=136 |||}}</ref>錒的化学属包括[[鑭]]在的鑭系元素相近,因此要石中分十分困。分离过程一般使用溶萃取法和[[析法]]。<ref>{{cite journal |title = Chemistry of the Actinide Elements Annual Review of Nuclear Science |volume = 1 |pages = 245–262 |year = 1952 |first = J. J. |last = Katz |doi = 10.1146/annurev.ns.01.120152.001333 |journal = Annual Review of Nuclear Science |last2 = Manning |first2 = W M |bibcode = 1952ARNPS...1..245K}}</ref>


[[錒]]是首[[錒系元素]]。些元素彼此的特性比[[鑭系元素]]更多元化,因此直到1945年,[[格·西多·西博格]]才提出[[元素期表]]加入錒系元素。是自[[德米特里·捷列夫]]造元素期表以來對週期表最大的變動之一。<ref>{{cite journal |title = The Transuranium Elements |first = Glenn T. |last = Seaborg |journal = Science |volume = 104 |issue = 2704 |year = 1946 |pages = 379–386 |jstor=1675046 |doi = 10.1126/science.104.2704.379 |pmid = 17842184 |bibcode = 1946Sci...104..379S}}</ref>
[[錒]]是首[[錒系元素]]。些元素彼此的特性比[[鑭系元素]]更多元化,因此直到1945年,[[格·西多·西博格]]才提出[[元素期表]]加入錒系元素。是自[[德米特里·捷列夫]]造元素期表以来对周期表最大的变动之一。<ref>{{cite journal |title = The Transuranium Elements |first = Glenn T. |last = Seaborg |journal = Science |volume = 104 |issue = 2704 |year = 1946 |pages = 379–386 |jstor=1675046 |doi = 10.1126/science.104.2704.379 |pmid = 17842184 |bibcode = 1946Sci...104..379S}}</ref>


錒在空會與、水迅速反,在表面生白色的保性氧化。<ref name="blueglow">{{cite journal |title = Preparation of Actinium Metal |first = Joseph G. |last = Stites |journal = J. Am. Chem. Soc. |year = 1955 |volume = 77 |issue = 1 |pages = 237–240 |doi = 10.1021/ja01606a085 |last2 = Salutsky |first2 = Murrell L. |last3 = Stone |first3 = Bob D.}}</ref>大部份鑭系和錒系元素一,錒的[[氧化]]通常是+3;Ac<sup>3+</sup>子在溶液中色。<ref name=bse/>錒的[[子排布]]是6d<sup>1</sup>7s<sup>2</sup>,所以失去3[[子]],就形成定的[[惰性氣體]][[氡]]一。<ref name="brit" />錒的+2只出在二氫化錒(AcH<sub>2</sub>)中。<ref name="ach" />
錒在空会与、水迅速反,在表面生白色的保性氧化。<ref name="blueglow">{{cite journal |title = Preparation of Actinium Metal |first = Joseph G. |last = Stites |journal = J. Am. Chem. Soc. |year = 1955 |volume = 77 |issue = 1 |pages = 237–240 |doi = 10.1021/ja01606a085 |last2 = Salutsky |first2 = Murrell L. |last3 = Stone |first3 = Bob D.}}</ref>大部份鑭系和錒系元素一,錒的[[氧化]]通常是+3;Ac<sup>3+</sup>子在溶液中色。<ref name=bse/>錒的[[子排布]]是6d<sup>1</sup>7s<sup>2</sup>,所以失去3[[子]],就形成定的[[惰性气体]][[氡]]一。<ref name="brit" />錒的+2只出在二氫化錒(AcH<sub>2</sub>)中。<ref name="ach" />


== 化合物 ==
== 化合物 ==
已知的錒化合物非常少,其中有[[三氟化錒]](AcF<sub>3</sub>)、[[三氯化錒]](AcCl<sub>3</sub>)、[[三溴化錒]](AcBr<sub>3</sub>)、[[氟氧化錒]](AcOF)、[[氯氧化錒]](AcOCl)、[[溴氧化錒]](AcOBr)、[[三硫化二錒]](Ac<sub>2</sub>S<sub>3</sub>)、[[氧化錒]](Ac<sub>2</sub>O<sub>3</sub>)和[[磷酸錒]](AcPO<sub>4</sub>)等。除AcPO<sub>4</sub>以外,些化合物都具有+3氧化,且都有相對應的鑭化合物。<ref name="bse" /><ref>{{cite journal |title = The Preparation and Identification of Some Pure Actinium Compounds |journal = Journal of the American Chemical Society |last = Sherman |first = Fried |pages = 771–775 |doi = 10.1021/ja01158a034 |year =1950 |volume = 72 |last2 = Hagemann |first2 = French |last3 = Zachariasen |first3 = W. H. |issue = 2}}</ref>對應的鑭和錒化合物在[[晶格常]]上的差不超百分之十。<ref name="j2" />
已知的錒化合物非常少,其中有[[三氟化錒]](AcF<sub>3</sub>)、[[三氯化錒]](AcCl<sub>3</sub>)、[[三溴化錒]](AcBr<sub>3</sub>)、[[氟氧化錒]](AcOF)、[[氯氧化錒]](AcOCl)、[[溴氧化錒]](AcOBr)、[[三硫化二錒]](Ac<sub>2</sub>S<sub>3</sub>)、[[氧化錒]](Ac<sub>2</sub>O<sub>3</sub>)和[[磷酸錒]](AcPO<sub>4</sub>)等。除AcPO<sub>4</sub>以外,些化合物都具有+3氧化,且都有相对应的鑭化合物。<ref name="bse" /><ref>{{cite journal |title = The Preparation and Identification of Some Pure Actinium Compounds |journal = Journal of the American Chemical Society |last = Sherman |first = Fried |pages = 771–775 |doi = 10.1021/ja01158a034 |year =1950 |volume = 72 |last2 = Hagemann |first2 = French |last3 = Zachariasen |first3 = W. H. |issue = 2}}</ref>对应的鑭和錒化合物在[[晶格常]]上的差不超百分之十。<ref name="j2" />


{| Class="wikitable collapsible collapsed" style="text-align: center"
{| Class="wikitable collapsible collapsed" style="text-align: center"
! 化
! 化
!
!
! 對稱
! 对称
! [[空群]]
! [[空群]]
! 空
! 空
! [[皮爾遜]]
! [[皮尔逊]]
! ''a''(pm)
! ''a''(pm)
! ''b''(pm)
! ''b''(pm)
第138行: 第138行:
|-
|-
| Ac
| Ac
| 白色
| 白色
| ''[[立方晶系|fcc]]''<ref name=ach>{{cite journal |doi=10.1016/0022-1902(61)80369-2 |last1=Farr |year=1961 |first1=J |pages=42 |volume=18 |journal=Journal of Inorganic and Nuclear Chemistry |title=The crystal structure of actinium metal and actinium hydride |last2=Giorgi |first2=A.L. |last3=Bowman |first3=M.G. |last4=Money |first4=R.K.}}</ref>
| ''[[立方晶系|fcc]]''<ref name=ach>{{cite journal |doi=10.1016/0022-1902(61)80369-2 |last1=Farr |year=1961 |first1=J |pages=42 |volume=18 |journal=Journal of Inorganic and Nuclear Chemistry |title=The crystal structure of actinium metal and actinium hydride |last2=Giorgi |first2=A.L. |last3=Bowman |first3=M.G. |last4=Money |first4=R.K.}}</ref>
| Fm{{overline|3}}m
| Fm{{overline|3}}m
第270行: 第270行:
|}
|}


上表中的''a''、''b''和''c''晶格常,''Z''每[[晶胞]]所含的化。密度實驗數據,而是體參數算得出的。
上表中的''a''、''b''和''c''晶格常,''Z''每[[晶胞]]所含的化。密度实验数据,而是体参数算得出的。


=== 氧化物 ===
=== 氧化物 ===
在真空中把[[氫氧化錒]]加至500&nbsp;°C或把[[草酸錒]]加至1100&nbsp;°C,可成[[氧化錒]](Ac<sub>2</sub>O<sub>3</sub>)。氧化錒的晶體結構與大部份三[[稀土金]]的氧化物同型。<ref name="j2" />
在真空中把[[氫氧化錒]]加至500&nbsp;°C或把[[草酸錒]]加至1100&nbsp;°C,可成[[氧化錒]](Ac<sub>2</sub>O<sub>3</sub>)。氧化錒的晶体结构与大部份三[[稀土金]]的氧化物同型。<ref name="j2" />


=== 鹵化物 ===
=== 鹵化物 ===
三氟化錒的合成反可以在液或固行。前者在室行,需[[氫氟酸]]加入含有錒子的溶液中。者需錒金施以[[氟化氫]]氣體,反要在700&nbsp;°C下行,使用全[[鉑]]器材。在900至1000&nbsp;°C下,三氟化錒和[[氫氧化銨]]反形成[[氟氧化物|氟氧化錒]](AcOF)。然三氟化鑭在空中以800&nbsp;°C燃燒一小時後就可以生氟氧化鑭,但是似的方法生氟氧化錒,而是把三氟化錒熔解。<ref name="j2" /><ref name="Meyer" />{{rp|87–88}}
三氟化錒的合成反可以在液或固行。前者在室行,需[[氫氟酸]]加入含有錒子的溶液中。者需錒金施以[[氟化氫]]气体,反要在700&nbsp;°C下行,使用全[[鉑]]器材。在900至1000&nbsp;°C下,三氟化錒和[[氫氧化銨]]反形成[[氟氧化物|氟氧化錒]](AcOF)。然三氟化鑭在空中以800&nbsp;°C燃燒一小时后就可以生氟氧化鑭,但是似的方法生氟氧化錒,而是把三氟化錒熔解。<ref name="j2" /><ref name="Meyer" />{{rp|87–88}}


:AcF<sub>3</sub> + 2 NH<sub>3</sub> + H<sub>2</sub>O → AcOF + 2 NH<sub>4</sub>F
:AcF<sub>3</sub> + 2 NH<sub>3</sub> + H<sub>2</sub>O → AcOF + 2 NH<sub>4</sub>F


氫氧化錒或草酸錒[[四氯化碳]]在960&nbsp;°C以上度反應會產生三氯化錒。同,三氯化錒氫氧化銨在1000&nbsp;°C反應會形成[[氯氧化物|氯氧化錒]]。但氟氧化錒不同的是,三氯化錒在[[氫氯酸]]溶液中用[[氨]]燃就可以生氯氧化錒。<ref name="j2" />
氫氧化錒或草酸錒[[四氯化碳]]在960&nbsp;°C以上度反应会产生三氯化錒。同,三氯化錒氫氧化銨在1000&nbsp;°C反应会形成[[氯氧化物|氯氧化錒]]。但氟氧化錒不同的是,三氯化錒在[[氫氯酸]]溶液中用[[氨]]燃就可以生氯氧化錒。<ref name="j2" />


[[溴化鋁]]氧化錒反應後形成三溴化錒:
[[溴化鋁]]氧化錒反应后形成三溴化錒:
:Ac<sub>2</sub>O<sub>3</sub> + 2 AlBr<sub>3</sub> → 2 AcBr<sub>3</sub> + Al<sub>2</sub>O<sub>3</sub>
:Ac<sub>2</sub>O<sub>3</sub> + 2 AlBr<sub>3</sub> → 2 AcBr<sub>3</sub> + Al<sub>2</sub>O<sub>3</sub>


在500&nbsp;°C加入氫氧化銨,可以生溴氧化錒(AcOBr)。<ref name="j2" />
在500&nbsp;°C加入氫氧化銨,可以生溴氧化錒(AcOBr)。<ref name="j2" />


=== 其他化合物 ===
=== 其他化合物 ===
三氯化錒在300&nbsp;°C下[[鉀]],可形成氫化錒,其結構氫化鑭(LaH<sub>2</sub>)的結構而得。中氫的源不明。<ref name="Meyer" />{{rp|43}}
三氯化錒在300&nbsp;°C下[[鉀]],可形成氫化錒,其结构氫化鑭(LaH<sub>2</sub>)的结构而得。中氫的源不明。<ref name="Meyer" />{{rp|43}}


在含錒的氫氯酸溶液中加入[[磷酸二氫]](NaH<sub>2</sub>PO<sub>4</sub>),會產生白色的半水合磷酸錒(AcPO<sub>4</sub>·0.5H<sub>2</sub>O)。草酸錒和[[硫化氫]]氣體在1400&nbsp;°C受熱幾會產生黑色的硫化錒(Ac<sub>2</sub>S<sub>3</sub>)。<ref name="j2" />
在含錒的氫氯酸溶液中加入[[磷酸二氫]](NaH<sub>2</sub>PO<sub>4</sub>),会产生白色的半水合磷酸錒(AcPO<sub>4</sub>·0.5H<sub>2</sub>O)。草酸錒和[[硫化氫]]气体在1400&nbsp;°C受热几会产生黑色的硫化錒(Ac<sub>2</sub>S<sub>3</sub>)。<ref name="j2" />


== 同位素 ==
== 同位素 ==
{{main|錒的同位素}}
{{main|錒的同位素}}
錒一共有36已知[[同位素]],全部都具有[[放射性]]。些同位素的[[原子量]]介乎206&nbsp;[[原子位|u]]({{chem|206|Ac}})和236&nbsp;u({{chem|236|Ac}})。<ref name="nubas" />其中最定的有:{{chem|227|Ac}}([[半衰期]]21.772年)、{{chem|225|Ac}}(10.0天)和{{chem|226|Ac}}(29.37小)。其餘的同位素的半衰期都小10小,大部份甚至小1分命最短的錒同位素是{{chem|217|Ac}},其半衰期只有69秒,會進行[[α衰]]和[[中子捕]]。錒兩個[[亞穩態]]([[同核異構體]])。<ref name="nubas">{{cite journal |last = Audi |first = Georges |title = The NUBASE Evaluation of Nuclear and Decay Properties |journal = Nuclear Physics A |volume = 729 |pages = 3–128 |publisher = Atomic Mass Data Center |year = 2003 |doi=10.1016/j.nuclphysa.2003.11.001 |bibcode=2003NuPhA.729....3A |last2 = Bersillon |first2 = O. |last3 = Blachot |first3 = J. |last4 = Wapstra |first4 = A.H.}}</ref>
錒一共有36已知[[同位素]],全部都具有[[放射性]]。些同位素的[[原子量]]介乎206&nbsp;[[原子位|u]]({{chem|206|Ac}})和236&nbsp;u({{chem|236|Ac}})。<ref name="nubas" />其中最定的有:{{chem|227|Ac}}([[半衰期]]21.772年)、{{chem|225|Ac}}(10.0天)和{{chem|226|Ac}}(29.37小)。其餘的同位素的半衰期都小10小,大部份甚至小1分寿命最短的錒同位素是{{chem|217|Ac}},其半衰期只有69秒,会进行[[α衰]]和[[中子捕]]。錒两个[[亚稳态]]([[同核异构体]])。<ref name="nubas">{{cite journal |last = Audi |first = Georges |title = The NUBASE Evaluation of Nuclear and Decay Properties |journal = Nuclear Physics A |volume = 729 |pages = 3–128 |publisher = Atomic Mass Data Center |year = 2003 |doi=10.1016/j.nuclphysa.2003.11.001 |bibcode=2003NuPhA.729....3A |last2 = Bersillon |first2 = O. |last3 = Blachot |first3 = J. |last4 = Wapstra |first4 = A.H.}}</ref>


自然界中的錒元素主要由{{chem|227|Ac}}成,此外微量的{{chem|225|Ac}}和{{chem|228|Ac}}。的{{chem|227|Ac}}在185天後與變產成平衡。它主要行[[β衰]](98.8%),以及少量的[[α衰]](1.2%)。<ref name="bse">{{cite web |url=http://bse.sci-lib.com/article008169.html |title=Actinium |publisher=Great Soviet Encyclopedia |accessdate=2013-12-16 |||}}</ref>些衰物都屬於[[錒衰系]]。{{chem|227|Ac}}射的β粒子能量低(46 [[子伏特|keV]]),α射的低,可用本也一般很少,所以很直接探到{{chem|227|Ac}}。因此科家一般以探其衰變產物的方法推算{{chem|227|Ac}}的量。<ref name=bse/>
自然界中的錒元素主要由{{chem|227|Ac}}成,此外微量的{{chem|225|Ac}}和{{chem|228|Ac}}。的{{chem|227|Ac}}在185天后与变产成平衡。它主要行[[β衰]](98.8%),以及少量的[[α衰]](1.2%)。<ref name="bse">{{cite web |url=http://bse.sci-lib.com/article008169.html |title=Actinium |publisher=Great Soviet Encyclopedia |accessdate=2013-12-16 |||}}</ref>些衰物都属于[[錒衰系]]。{{chem|227|Ac}}射的β粒子能量低(46 [[子伏特|keV]]),α射的低,可用本也一般很少,所以很直接探到{{chem|227|Ac}}。因此科家一般以探其衰变产物的方法推算{{chem|227|Ac}}的量。<ref name=bse/>


{| class="wikitable" style="text-align:center"
{| class="wikitable" style="text-align:center"
!同位素
!同位素
!合成反
!合成反
!衰形式
!衰形式
!半衰期
!半衰期
|-
|-
第317行: 第317行:
|<sup>232</sup>Th(d,7n)<sup>227</sup>Pa(α)→<sup>223</sup>Ac
|<sup>232</sup>Th(d,7n)<sup>227</sup>Pa(α)→<sup>223</sup>Ac
|2.1分
|2.1分
|-
|-
|<sup>224</sup>Ac
|<sup>224</sup>Ac
|<sup>232</sup>Th(d,6n)<sup>228</sup>Pa(α)→<sup>224</sup>Ac
|<sup>232</sup>Th(d,6n)<sup>228</sup>Pa(α)→<sup>224</sup>Ac
|2.78小
|2.78小
|-
|-
|<sup>225</sup>Ac
|<sup>225</sup>Ac
第331行: 第331行:
|<sup>226</sup>Ac
|<sup>226</sup>Ac
|<sup>226</sup>Ra(d,2n)<sup>226</sup>Ac
|<sup>226</sup>Ra(d,2n)<sup>226</sup>Ac
|α、β<sup>−</sup>、子捕
|α、β<sup>−</sup>、子捕
|29.37小
|29.37小
|-
|-
|<sup>227</sup>Ac
|<sup>227</sup>Ac
第342行: 第342行:
|<sup>232</sup>Th(α)→<sup>228</sup>Ra(β<sup>−</sup>)→<sup>228</sup>Ac
|<sup>232</sup>Th(α)→<sup>228</sup>Ra(β<sup>−</sup>)→<sup>228</sup>Ac
|β<sup>−</sup>
|β<sup>−</sup>
|6.15小
|6.15小
|-
|-
|<sup>229</sup>Ac
|<sup>229</sup>Ac
|<sup>228</sup>Ra(n,γ)<sup>229</sup>Ra(β<sup>−</sup>)→<sup>229</sup>Ac
|<sup>228</sup>Ra(n,γ)<sup>229</sup>Ra(β<sup>−</sup>)→<sup>229</sup>Ac
|β<sup>−</sup>
|β<sup>−</sup>
|62.7分
|62.7分
|-
|-
|<sup>230</sup>Ac
|<sup>230</sup>Ac
第357行: 第357行:
|<sup>232</sup>Th(γ,p)<sup>231</sup>Ac
|<sup>232</sup>Th(γ,p)<sup>231</sup>Ac
|β<sup>−</sup>
|β<sup>−</sup>
|7.5分
|7.5分
|-
|-
|<sup>232</sup>Ac
|<sup>232</sup>Ac
第366行: 第366行:


== 存量及合成 ==
== 存量及合成 ==
[[File:Uraninite-39029.jpg|150px|缩略图|[[瀝青鈾]]中含有少量的錒元素]]
[[File:Uraninite-39029.jpg|150px|缩略图|[[瀝青鈾]]中含有少量的錒元素]]
錒元素在地球上十分稀少,只有痕量的<sup>227</sup>Ac同位素出在[[鈾]]石中:每石只含有大0.2毫克的錒。<ref name=j1>{{cite journal |doi=10.1021/ja01158a033 |last1=Hagemann |year=1950 |first1=French |pages=768 |volume=72 |journal=Journal of the American Chemical Society |title=The Isolation of Actinium |issue=2}}</ref><ref name=g946>{{Greenwood&Earnshaw2nd|page=946}}</ref><sup>227</sup>Ac是[[錒衰系]]中的其中一短暫存在的同位素。變鏈[[鈾-235|<sup>235</sup>U]](或[[鈈-239|<sup>239</sup>Pu]]),止[[定同位素]][[鉛的同位素|<sup>207</sup>Pb]]。<sup>225</sup>Ac是[[錼衰系]]中短暫存在的同位素。變鏈[[錼的同位素|<sup>237</sup>Np]](或[[鈾-233|<sup>233</sup>U]]),止近似定的[[鉍-209|<sup>209</sup>Bi]]和定的[[鉈的同位素|<sup>205</sup>Tl]]。<ref>{{cite book
錒元素在地球上十分稀少,只有痕量的<sup>227</sup>Ac同位素出在[[鈾]]石中:每石只含有大0.2毫克的錒。<ref name=j1>{{cite journal |doi=10.1021/ja01158a033 |last1=Hagemann |year=1950 |first1=French |pages=768 |volume=72 |journal=Journal of the American Chemical Society |title=The Isolation of Actinium |issue=2}}</ref><ref name=g946>{{Greenwood&Earnshaw2nd|page=946}}</ref><sup>227</sup>Ac是[[錒衰系]]中的其中一短暫存在的同位素。变链[[鈾-235|<sup>235</sup>U]](或[[鈈-239|<sup>239</sup>Pu]]),止[[定同位素]][[鉛的同位素|<sup>207</sup>Pb]]。<sup>225</sup>Ac是[[錼衰系]]中短暫存在的同位素。变链[[錼的同位素|<sup>237</sup>Np]](或[[鈾-233|<sup>233</sup>U]]),止近似定的[[鉍-209|<sup>209</sup>Bi]]和定的[[鉈的同位素|<sup>205</sup>Tl]]。<ref>{{cite book
|author1=C.M. Lederer |author2=J.M. Hollander |author3=I. Perlman |year=1968
|author1=C.M. Lederer |author2=J.M. Hollander |author3=I. Perlman |year=1968
|title=Table of Isotopes
|title=Table of Isotopes
第375行: 第375行:
|isbn=
|isbn=
|oclc=
|oclc=
}}</ref>惟自然界中的錼衰系早已衰現時地殼中的<sup>237</sup>Np主要由[[鈾-238|<sup>238</sup>U]]生{{le|核散裂|Nuclear spallation}}而痕量生成。<ref name="chain">{{cite book|title=Chemistry and Analysis of Radionuclides: Laboratory Techniques and Methodology|publisher=Wiley-VCH|pages=2–3|year=2011 | isbn = 978-3-527-32658-7 |first1=Jukka|last1=Lehto|first2=Xiaolin|last2=Hou}}</ref>
}}</ref>惟自然界中的錼衰系早已衰现时地殼中的<sup>237</sup>Np主要由[[鈾-238|<sup>238</sup>U]]生{{le|核散裂|Nuclear spallation}}而痕量生成。<ref name="chain">{{cite book|title=Chemistry and Analysis of Radionuclides: Laboratory Techniques and Methodology|publisher=Wiley-VCH|pages=2–3|year=2011 | isbn = 978-3-527-32658-7 |first1=Jukka|last1=Lehto|first2=Xiaolin|last2=Hou}}</ref>


含有錒的石中也同含有[[鑭]]及其他[[鑭系元素]]。然而些元素的化、物理特性錒非常接近,再加上錒含量更稀少,因此從礦石中分出錒元素的做法不具實際性,科家也未完全分出錒。<ref name="j2">{{cite journal |doi=10.1021/ja01158a034 |last1=Fried |year=1950 |first1=Sherman |pages=771 |volume=72 |journal=Journal of the American Chemical Society |last2=Hagemann |first2=French |last3=Zachariasen |first3=W. H. |title=The Preparation and Identification of Some Pure Actinium Compounds |issue=2}}</ref>錒元素通常是在[[核反應爐]]中用中子照射<sup>226</sup>[[鐳|Ra]]生的,每次量以毫克。<ref name=g946/><ref>{{cite book |author=Emeleus, H. J. |title=Advances in inorganic chemistry and radiochemistry |url=http://books.google.com/books?id=K5_LSQqeZ_IC&pg=PA16 |accessdate=2013-12-16 |date=1987-07 |publisher=Academic Press |isbn=978-0-12-023631-2 |page=16 |||}}</ref>
含有錒的石中也同含有[[鑭]]及其他[[鑭系元素]]。然而些元素的化、物理特性錒非常接近,再加上錒含量更稀少,因此从矿石中分出錒元素的做法不具实际性,科家也未完全分出錒。<ref name="j2">{{cite journal |doi=10.1021/ja01158a034 |last1=Fried |year=1950 |first1=Sherman |pages=771 |volume=72 |journal=Journal of the American Chemical Society |last2=Hagemann |first2=French |last3=Zachariasen |first3=W. H. |title=The Preparation and Identification of Some Pure Actinium Compounds |issue=2}}</ref>錒元素通常是在[[核反应炉]]中用中子照射<sup>226</sup>[[鐳|Ra]]生的,每次量以毫克。<ref name=g946/><ref>{{cite book |author=Emeleus, H. J. |title=Advances in inorganic chemistry and radiochemistry |url=http://books.google.com/books?id=K5_LSQqeZ_IC&pg=PA16 |accessdate=2013-12-16 |date=1987-07 |publisher=Academic Press |isbn=978-0-12-023631-2 |page=16 |||}}</ref>


:<math>\mathrm{^{226}_{\ 88}Ra\ +\ ^{1}_{0}n\ \longrightarrow \ ^{227}_{\ 88}Ra\ \xrightarrow[42.2 \ min]{\beta^-} \ ^{227}_{\ 89}Ac}</math>
:<math>\mathrm{^{226}_{\ 88}Ra\ +\ ^{1}_{0}n\ \longrightarrow \ ^{227}_{\ 88}Ra\ \xrightarrow[42.2 \ min]{\beta^-} \ ^{227}_{\ 89}Ac}</math>


的錒約為鐳重量的2%。<sup>227</sup>Ac可再捕中子,形成少量的<sup>228</sup>Ac。合成過後,錒需鐳以及其他的衰變產物中分物包括釷、釙、鉛和鉍。第一法使用噻吩甲酰三氟丙酮和[[苯]]的混合溶液。調溶液的[[pH值]],可含衰變產物的溶液中萃取出特定的元素(錒需要pH 6.0左右)。<ref name=j1/>另一法是在[[硝酸]]中以適的[[脂]]負離子交法,先把鐳和錒釷分離開來(分離係數為1百),再用正子交換樹脂和硝酸洗脫液把錒鐳中提取出係數為100)。<ref name="sep" />
的錒约为鐳重量的2%。<sup>227</sup>Ac可再捕中子,形成少量的<sup>228</sup>Ac。合成过后,錒需鐳以及其他的衰变产物中分物包括釷、釙、鉛和鉍。第一法使用噻吩甲酰三氟丙酮和[[苯]]的混合溶液。溶液的[[pH值]],可含衰变产物的溶液中萃取出特定的元素(錒需要pH 6.0左右)。<ref name=j1/>另一法是在[[硝酸]]中以適的[[脂]]负离子交法,先把鐳和錒釷分离开来(分离系数为1百),再用正子交换树脂和硝酸洗脫液把錒鐳中提取出系数为100)。<ref name="sep" />


[[德]]和[[澳大利亚]]的科家在2000年首次人工合成<sup>225</sup>Ac。[[德]]超鈾元素研究所所使用的是[[旋加速器]],而[[澳大利亚]]的研究人員則使用位[[悉尼]]聖喬院的[[直加速器]]。<ref>{{cite journal |doi = 10.1016/j.apradiso.2008.11.012 |year = 2009 |author = Melville, G; Allen, Bj |title = Cyclotron and linac production of Ac-225 |volume = 67 |issue = 4 |pages = 549–55 |pmid = 19135381 |journal = Applied radiation and isotopes}}</ref>其合成方法鐳-226目標體進行20至30 [[子伏特|MeV]]能量[[氘]]子撞一反時會產生半衰期29小的<sup>226</sup>Ac同位素,但由<sup>225</sup>Ac的半衰期有10天,所以前者不會對後者造成不。<sup>225</sup>Ac是一稀有的同位素,在[[放射線療法]]中有在的用途。<ref>Russell, Pamela J.; Jackson, Paul and Kingsley, Elizabeth Anne [http://books.google.com/books?id=K1y6k5bdlWkC&pg=PA336 Prostate cancer methods and protocols] , Humana Press, 2003, ISBN 978-0-89603-978-0, p. 336</ref>
[[德]]和[[澳大利亚]]的科家在2000年首次人工合成<sup>225</sup>Ac。[[德]]超鈾元素研究所所使用的是[[旋加速器]],而[[澳大利亚]]的研究人员则使用位[[悉尼]]圣乔院的[[直线加速器]]。<ref>{{cite journal |doi = 10.1016/j.apradiso.2008.11.012 |year = 2009 |author = Melville, G; Allen, Bj |title = Cyclotron and linac production of Ac-225 |volume = 67 |issue = 4 |pages = 549–55 |pmid = 19135381 |journal = Applied radiation and isotopes}}</ref>其合成方法鐳-226目标体进行20至30 [[子伏特|MeV]]能量[[氘]]子撞一反时会产生半衰期29小的<sup>226</sup>Ac同位素,但由<sup>225</sup>Ac的半衰期有10天,所以前者不会对后者造成不。<sup>225</sup>Ac是一稀有的同位素,在[[放射线疗法]]中有在的用途。<ref>Russell, Pamela J.; Jackson, Paul and Kingsley, Elizabeth Anne [http://books.google.com/books?id=K1y6k5bdlWkC&pg=PA336 Prostate cancer methods and protocols] , Humana Press, 2003, ISBN 978-0-89603-978-0, p. 336</ref>


在1100至1300&nbsp;°C以[[鋰]]氣體對氟化錒原反,可以生錒金。太高的使化,而太低溫則會導致反不能完全行。鋰的氟化物揮性比其他[[鹼金]]的高,因此最適合用於這一反中。<ref name="CRC">Hammond, C. R. ''The Elements'' in {{RubberBible86th}}</ref><ref name="blueglow"/>
在1100至1300&nbsp;°C以[[鋰]]气体对氟化錒原反,可以生錒金。太高的使化,而太低温则会导致反不能完全行。鋰的氟化物揮性比其他[[鹼金]]的高,因此最適合用于这一反中。<ref name="CRC">Hammond, C. R. ''The Elements'' in {{RubberBible86th}}</ref><ref name="blueglow"/>


== 用 ==
== 用 ==
存量稀少,格昂,所以錒目前並無重要的工用途。<ref name="CRC" />
存量稀少,格昂,所以錒目前并无重要的工用途。<ref name="CRC" />


<sup>227</sup>Ac放射性很,因此有力用[[放射性同位素熱電機]]中,範圍包括[[航天器]]。<sup>227</sup>Ac的氧化物和[[鈹]]壓製後可以作高效能[[中子源]],其活度高一般的[[鋂]]﹣鈹和鐳﹣鈹中子源。<ref name="b1">Russell, Alan M. and Lee, Kok Loong [http://books.google.com/books?id=fIu58uZTE-gC&pg=PA470 Structure-property relations in nonferrous metals] , Wiley, 2005, ISBN 978-0-471-64952-6, pp. 470–471</ref>用利用的其是<sup>227</sup>Ac的衰變產物。行β衰變後生的同位素會釋放[[α粒子]],而鈹獲這些α粒子,放出中子。鈹的9Be(α,n)12C[[核反]][[截面 (物理)|截面]]高,因此能高效地α粒子轉換為中子。的公式如下:<ref>{{Cite book| url=https://books.google.com/?id=FCnUN45cL1cC&pg=PA239|page=239|chapter=Nuclear Properties|title=Beryllium its Metallurgy and Properties|publisher=University of California Press|first=Henry H|last=Hausner| date=1965}}</ref>
<sup>227</sup>Ac放射性很,因此有力用[[放射性同位素热电机]]中,范围包括[[航天器]]。<sup>227</sup>Ac的氧化物和[[鈹]]压制后可以作高效能[[中子源]],其活度高一般的[[鋂]]﹣鈹和鐳﹣鈹中子源。<ref name="b1">Russell, Alan M. and Lee, Kok Loong [http://books.google.com/books?id=fIu58uZTE-gC&pg=PA470 Structure-property relations in nonferrous metals] , Wiley, 2005, ISBN 978-0-471-64952-6, pp. 470–471</ref>用利用的其是<sup>227</sup>Ac的衰变产物。行β衰变后生的同位素会释放[[α粒子]],而鈹获这些α粒子,放出中子。鈹的9Be(α,n)12C[[核反]][[截面 (物理)|截面]]高,因此能高效地α粒子转换为中子。的公式如下:<ref>{{Cite book| url=https://books.google.com/?id=FCnUN45cL1cC&pg=PA239|page=239|chapter=Nuclear Properties|title=Beryllium its Metallurgy and Properties|publisher=University of California Press|first=Henry H|last=Hausner| date=1965}}</ref>


: <math>\mathrm{^{9}_{4}Be\ +\ ^{4}_{2}He\ \longrightarrow \ ^{12}_{\ 6}C\ +\ ^{1}_{0}n\ +\ \gamma}</math>
: <math>\mathrm{^{9}_{4}Be\ +\ ^{4}_{2}He\ \longrightarrow \ ^{12}_{\ 6}C\ +\ ^{1}_{0}n\ +\ \gamma}</math>


<sup>227</sup>AcBe可用[[中子水份]]中,以量土壤中的水份以及在建造公路時進行濕度、密度的檢驗。<ref>Majumdar, D. K. [http://books.google.com/books?id=hf1j9v4v3OEC&pg=PA108 Irrigation Water Management: Principles and Practice] , 2004 ISBN 978-81-203-1729-1 p. 108</ref><ref>Chandrasekharan, H. and Gupta, Navindu [http://books.google.com/books?id=45IDh4Lt8xsC&pg=PA203 Fundamentals of Nuclear Science – Application in Agriculture] , 2006 ISBN 978-81-7211-200-4 pp. 202 ff</ref>這類測儀井、[[中子照相]]、[[斷層攝]]及其他放射性化學範疇中都有用的空。<ref>{{cite journal |title = Neutron Spectrum of an Actinium–Beryllium Source |first = W.R. |last = Dixon |journal = Can. J. Phys./Rev. Can. Phys. |volume = 35 |issue = 6 |pages = 699–702 |year = 1957 |doi = 10.1139/p57-075 |last2 = Bielesch |first2 = Alice |last3 = Geiger |first3 = K. W.|bibcode = 1957CaJPh..35..699D}}</ref>
<sup>227</sup>AcBe可用[[中子水份]]中,以量土壤中的水份以及在建造公路时进行濕度、密度的检验。<ref>Majumdar, D. K. [http://books.google.com/books?id=hf1j9v4v3OEC&pg=PA108 Irrigation Water Management: Principles and Practice] , 2004 ISBN 978-81-203-1729-1 p. 108</ref><ref>Chandrasekharan, H. and Gupta, Navindu [http://books.google.com/books?id=45IDh4Lt8xsC&pg=PA203 Fundamentals of Nuclear Science – Application in Agriculture] , 2006 ISBN 978-81-7211-200-4 pp. 202 ff</ref>这类测仪井、[[中子照相]]、[[断层摄]]及其他放射性化学范疇中都有用的空。<ref>{{cite journal |title = Neutron Spectrum of an Actinium–Beryllium Source |first = W.R. |last = Dixon |journal = Can. J. Phys./Rev. Can. Phys. |volume = 35 |issue = 6 |pages = 699–702 |year = 1957 |doi = 10.1139/p57-075 |last2 = Bielesch |first2 = Alice |last3 = Geiger |first3 = K. W.|bibcode = 1957CaJPh..35..699D}}</ref>


[[File:DOTA polyaminocarboxylic acid.png|缩略图|150px|在放射線療法中用於運輸<sup>225</sup>Ac的[[DOTA (螯合)|DOTA]]載體的化學結構。]]
[[File:DOTA polyaminocarboxylic acid.png|缩略图|150px|在放射线疗法中用于运输<sup>225</sup>Ac的[[DOTA (螯合)|DOTA]]载体的化学结构。]]
<sup>225</sup>Ac在醫學中用於製造<sup>213</sup>[[鉍|Bi]],<ref name=sep>{{cite journal |doi = 10.1016/j.apradiso.2004.12.003 |year = 2005 |volume = 62 |issue = 5 |pages =667–679 |title = Production of actinium-225 for alpha particle mediated radioimmunotherapy |last = Bolla |first = Rose A. |journal = Applied Radiation and Isotopes |pmid = 15763472 |last2 = Malkemus |first2 = D |last3 = Mirzadeh |first3 = S}}</ref>或直接作[[放射線療法]]的射源。<sup>225</sup>Ac的半衰期10天,比<sup>213</sup>Bi的46小更適合作放射。<sup>225</sup>Ac及其衰變產物所放的α粒子可以死身體內的癌細胞。最大的困簡單的錒配合物[[靜注射]]體內後會積累在骨骼和肝臟中,停留十年。持射在死癌細胞新的[[突]]。要避免這種問題,可<sup>225</sup>Ac[[螯合]]合,例如[[檸檬酸]]、[[乙二胺四乙酸]](EDTA)和[[替酸|二乙烯三胺五乙酸]](DTPA)。可降低錒在骨骼中的累,但排泄的量仍然不高。改用HEHA<ref>{{cite journal |title=Improved in Vivo Stability of Actinium-225 Macrocyclic Complexes}}</ref>或耦合至[[曲妥珠抗]]的[[DOTA (螯合)|DOTA]](1,4,7,10-四氮雜環十二烷-1,4,7,10-四羧酸)等螯合可以增加錒的排泄量。曲妥珠抗是一[[株抗]],能干擾[[HER2/neu]][[受 (生物化)|受]]。科家把錒DOTA注射到老鼠體內發現療法有效抗[[白血病]]、[[淋巴瘤]]、[[乳癌]]、[[卵巢癌]]、[[神母細胞瘤]]和[[前列腺癌]]。<ref>{{cite journal |last1=McDevitt |first1=Michael R. |last2=Ma |first2=Dangshe |last3=Lai |first3=Lawrence T. |last4=Simon |first4=Jim |last5=Borchardt |first5=Paul |last6=Frank |first6=R. Keith |last7=Wu |first7=Karen |last8=Pellegrini |first8=Virginia |last9=Curcio |first9=Michael J. |last10=Miederer |first10=Matthias |last11=Bander |first11=Neil H. |last12=Scheinberg |first12=David A. |displayauthors=3 |title=Tumor Therapy with Targeted Atomic Nanogenerators |year=2001 |journal=Science |volume=294 |issue=5546 |pages=1537–1540 |doi=10.1126/science.1064126 |bibcode=2001Sci...294.1537M |pmid=11711678 |url=http://www.studybusiness.com/HTML/Bio/10021/10021-04-2003-BIO-04-E.pdf |||}}</ref><ref>{{cite journal |url=http://cancerres.aacrjournals.org/content/63/16/5084.full.pdf |title=Targeted Actinium-225 in Vivo Generators for Therapy of Ovarian Cancer |author=Borchardt, Paul E. et al. |journal=Cancer Research |volume=63 |issue=16 |pages=5084–5090 |year=2003 |pmid=12941838 |access-date=2013-12-14 |||}}</ref><ref>{{cite journal |author=Ballangrud, A. M. ''et al.'' |title=Alpha-particle emitting atomic generator (Actinium-225)-labeled trastuzumab (herceptin) targeting of breast cancer spheroids: efficacy versus HER2/neu expression |journal=Clinical cancer research : an official journal of the American Association for Cancer Research |volume=10 |issue=13 |pages=4489–97 |year=2004 |pmid=15240541 |doi=10.1158/1078-0432.CCR-03-0800}}</ref>
<sup>225</sup>Ac在医学中用于制造<sup>213</sup>[[鉍|Bi]],<ref name=sep>{{cite journal |doi = 10.1016/j.apradiso.2004.12.003 |year = 2005 |volume = 62 |issue = 5 |pages =667–679 |title = Production of actinium-225 for alpha particle mediated radioimmunotherapy |last = Bolla |first = Rose A. |journal = Applied Radiation and Isotopes |pmid = 15763472 |last2 = Malkemus |first2 = D |last3 = Mirzadeh |first3 = S}}</ref>或直接作[[放射线疗法]]的射源。<sup>225</sup>Ac的半衰期10天,比<sup>213</sup>Bi的46小更適合作放射线。<sup>225</sup>Ac及其衰变产物所放的α粒子可以死身体内的癌細胞。最大的困简单的錒配合物[[靜注射]]体内后会积累在骨骼和肝臟中,停留十年。持射在死癌細胞新的[[突]]。要避免这种问题,可<sup>225</sup>Ac[[螯合]]合,例如[[檸檬酸]]、[[乙二胺四乙酸]](EDTA)和[[替酸|二乙烯三胺五乙酸]](DTPA)。可降低錒在骨骼中的累,但排泄的量仍然不高。改用HEHA<ref>{{cite journal |title=Improved in Vivo Stability of Actinium-225 Macrocyclic Complexes}}</ref>或耦合至[[曲妥珠抗]]的[[DOTA (螯合)|DOTA]](1,4,7,10-四氮杂环十二烷-1,4,7,10-四羧酸)等螯合可以增加錒的排泄量。曲妥珠抗是一[[株抗]],能干擾[[HER2/neu]][[受 (生物化)|受]]。科家把錒DOTA注射到老鼠体内发现疗法有效抗[[白血病]]、[[淋巴瘤]]、[[乳癌]]、[[卵巢癌]]、[[神母細胞瘤]]和[[前列腺癌]]。<ref>{{cite journal |last1=McDevitt |first1=Michael R. |last2=Ma |first2=Dangshe |last3=Lai |first3=Lawrence T. |last4=Simon |first4=Jim |last5=Borchardt |first5=Paul |last6=Frank |first6=R. Keith |last7=Wu |first7=Karen |last8=Pellegrini |first8=Virginia |last9=Curcio |first9=Michael J. |last10=Miederer |first10=Matthias |last11=Bander |first11=Neil H. |last12=Scheinberg |first12=David A. |displayauthors=3 |title=Tumor Therapy with Targeted Atomic Nanogenerators |year=2001 |journal=Science |volume=294 |issue=5546 |pages=1537–1540 |doi=10.1126/science.1064126 |bibcode=2001Sci...294.1537M |pmid=11711678 |url=http://www.studybusiness.com/HTML/Bio/10021/10021-04-2003-BIO-04-E.pdf |||}}</ref><ref>{{cite journal |url=http://cancerres.aacrjournals.org/content/63/16/5084.full.pdf |title=Targeted Actinium-225 in Vivo Generators for Therapy of Ovarian Cancer |author=Borchardt, Paul E. et al. |journal=Cancer Research |volume=63 |issue=16 |pages=5084–5090 |year=2003 |pmid=12941838 |access-date=2013-12-14 |||}}</ref><ref>{{cite journal |author=Ballangrud, A. M. ''et al.'' |title=Alpha-particle emitting atomic generator (Actinium-225)-labeled trastuzumab (herceptin) targeting of breast cancer spheroids: efficacy versus HER2/neu expression |journal=Clinical cancer research : an official journal of the American Association for Cancer Research |volume=10 |issue=13 |pages=4489–97 |year=2004 |pmid=15240541 |doi=10.1158/1078-0432.CCR-03-0800}}</ref>


<sup>227</sup>Ac的半衰期21.77年,可用研究海水的緩慢垂直混合作用。這種水流的速度大約為每年50米,因此直接量是法得到足的精度的。科家通各同位素在不同深度的相比例化,可以推算出混合作用的生速率。具的物理原理如下。海水含有均衡分的<sup>235</sup>U。其衰變產物<sup>231</sup>Pa慢慢沉澱到海底,所以其濃度會隨深度增加,在一定的深度以下持恒等。<sup>231</sup>Pa再衰成<sup>227</sup>Ac。混合作用把海底的<sup>227</sup>Ac提升上,因此<sup>227</sup>Ac的濃度深度一直增加至海底。科家分析<sup>231</sup>Pa和<sup>227</sup>Ac的濃度﹣深度關係,可以接研究海水的混合作用。<ref>{{cite journal |last1=Nozaki |first1=Yoshiyuki |title=Excess 227Ac in deep ocean water |journal=Nature |volume=310 |pages=486 |year=1984 |doi=10.1038/310486a0 | issue=5977 | bibcode = 1984Natur.310..486N}}</ref><ref>{{cite journal |last1=Geibert |first1=W. |last2=Rutgers Van Der Loeff |first2=M.M. |last3=Hanfland |first3=C. |last4=Dauelsberg |first4=H.-J. |title=Actinium-227 as a deep-sea tracer: sources, distribution and applications |journal=Earth and Planetary Science Letters |volume=198 |pages=147 |year=2002 |doi=10.1016/S0012-821X(02)00512-5 |bibcode=2002E&PSL.198..147G}}</ref>
<sup>227</sup>Ac的半衰期21.77年,可用研究海水的緩慢垂直混合作用。这种水流的速度大约为每年50米,因此直接量是法得到足的精度的。科家通各同位素在不同深度的相比例化,可以推算出混合作用的生速率。具的物理原理如下。海水含有均衡分的<sup>235</sup>U。其衰变产物<sup>231</sup>Pa慢慢沉澱到海底,所以其濃度会随深度增加,在一定的深度以下持恒等。<sup>231</sup>Pa再衰成<sup>227</sup>Ac。混合作用把海底的<sup>227</sup>Ac提升上,因此<sup>227</sup>Ac的濃度深度一直增加至海底。科家分析<sup>231</sup>Pa和<sup>227</sup>Ac的濃度﹣深度关系,可以接研究海水的混合作用。<ref>{{cite journal |last1=Nozaki |first1=Yoshiyuki |title=Excess 227Ac in deep ocean water |journal=Nature |volume=310 |pages=486 |year=1984 |doi=10.1038/310486a0 | issue=5977 | bibcode = 1984Natur.310..486N}}</ref><ref>{{cite journal |last1=Geibert |first1=W. |last2=Rutgers Van Der Loeff |first2=M.M. |last3=Hanfland |first3=C. |last4=Dauelsberg |first4=H.-J. |title=Actinium-227 as a deep-sea tracer: sources, distribution and applications |journal=Earth and Planetary Science Letters |volume=198 |pages=147 |year=2002 |doi=10.1016/S0012-821X(02)00512-5 |bibcode=2002E&PSL.198..147G}}</ref>


== 安全 ==
== 安全 ==
<sup>227</sup>Ac的放射性極強,因此有實驗都必專業實驗室的[[手套箱]]中行。[[三氯化錒]][[靜]]注射入[[老鼠]]體內後33%的錒元素累在[[骨骼]]中,50%入[[肝臟]]。其毒性稍低[[鋂]]和[[鈽]]。<ref>{{cite journal |doi = 10.2172/4406766 |title = Toxicology of Actinium Equilibrium Mixture |first2 = J. |last = Langham |last2 = Storer |first = W. |year = 1952 | journal = Los Alamos Scientific Lab.: Technical Report}}</ref>
<sup>227</sup>Ac的放射性极强,因此有实验都必专业实验室的[[手套箱]]中行。[[三氯化錒]][[靜]]注射入[[老鼠]]体内后33%的錒元素累在[[骨骼]]中,50%入[[肝臟]]。其毒性稍低[[鋂]]和[[鈽]]。<ref>{{cite journal |doi = 10.2172/4406766 |title = Toxicology of Actinium Equilibrium Mixture |first2 = J. |last = Langham |last2 = Storer |first = W. |year = 1952 | journal = Los Alamos Scientific Lab.: Technical Report}}</ref>


== 料 ==
== 料 ==
{{Reflist|30em}}
{{Reflist|30em}}


== 外部連結 ==
== 外部链接 ==
{{Elements.links|Actinium}}
{{Elements.links|Actinium}}
* [http://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@na+@rel+actinium,+radioactive NLM Hazardous Substances Databank – Actinium, Radioactive]
* [http://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@na+@rel+actinium,+radioactive NLM Hazardous Substances Databank – Actinium, Radioactive]
第423行: 第423行:
}}
}}


{{元素期表}}
{{元素期表}}


[[Category:锕| ]]
[[Category:锕| ]]