反氫:修订间差异

求闻百科,共笔求闻
添加的内容 删除的内容
(机器人:删除3个模板:Wayback、​Webarchive、​WebCite)
(机器人:清理不当的来源、移除无用的模板参数)
 

(未显示3个用户的6个中间版本)

第12行: 第12行:
| CASNo = 12791-17-2
| CASNo = 12791-17-2
| matter number=1|left=-|right=[[氦]]|above=-|below=[[鋰]]
| matter number=1|left=-|right=[[氦]]|above=-|below=[[鋰]]
| 組成 = 1個[[反質子]]與<br/>1個[[正子]]<ref>{{cite web|title=Observation of the 1S–2S transition in trapped antihydrogen|url=https://www.nature.com/articles/nature21040|access-date=2020-11-14|archive-date=2021-02-24|archive-url=https://web.archive.org/web/20210224053647/https://www.nature.com/articles/nature21040|dead-url=no}}</ref><div style="border:0; margin:0 auto;">[[File:Positron shell -002 Antihydrogen - no label.svg.png|153px]]</div>
| 組成 = 1個[[反質子]]與<br>1個[[正子]]<ref>{{cite web|title=Observation of the 1S–2S transition in trapped antihydrogen|url=https://www.nature.com/articles/nature21040|access-date=2020-11-14}}</ref><div style="border:0; margin:0 auto;">[[File:Positron shell -002 Antihydrogen - no label.svg.png|153px]]</div>
| Formula=<span style="text-decoration: overline">H</span>
| Formula=<span style="text-decoration: overline">H</span>
| MolarMass=
| MolarMass=
第18行: 第18行:
{{Elementbox_isotopes_decay | mn=1 | sym=反氫 | na=人造{{查證請求}} | hl=未有實驗測定 | stable_data={{查證請求}} }}
{{Elementbox_isotopes_decay | mn=1 | sym=反氫 | na=人造{{查證請求}} | hl=未有實驗測定 | stable_data={{查證請求}} }}
}}
}}
[[File:3D image of Antihydrogen.jpg|缩略图||一顆反氫原子由一個[[正子]]和一個[[反質子]]組成]]
[[File:3D image of Antihydrogen.jpg|thumb|right|一顆反氫原子由一個[[正子]]和一個[[反質子]]組成]]
'''反氫'''('''antihydrogen''')是對應元素[[氫]]的[[反物質]]:每顆氫[[原子]]是由一顆[[質子]]及[[電子]]組成,而反氫則是由一顆[[反質子]]及[[正電子]]組成。其[[化學符號]]多以「<span style="text-decoration: overline">H</span>」表示,即「H」上加一橫條,讀作「H-bar」。科学家希望研究反氢,来阐明为什么在可观测宇宙中,[[物质]]比[[反物质]]多的问题,被称为[[重子不对称性]]问题。 <ref>[https://www.bbc.co.uk/news/science-environment-13666892 BBC News – Antimatter atoms are corralled even longer] . Bbc.co.uk. Retrieved on 2011-06-08.</ref>反氢是在[[粒子加速器]]中人工产生的。 1999年,[[NASA]] 估计每克反氢的制造成本为62.5兆美元 (相当于今天的{{Inflation|US|62.5|1999}}兆美元),使得它成为制造成本最高的物质。<ref name="NASA1999">{{cite web
'''反氫'''('''antihydrogen''')是對應元素[[氫]]的[[反物質]]:每顆氫[[原子]]是由一顆[[質子]]及[[電子]]組成,而反氫則是由一顆[[反質子]]及[[正電子]]組成。其[[化學符號]]多以「<span style="text-decoration: overline">H</span>」表示,即「H」上加一橫條,讀作「H-bar」。科学家希望研究反氢,来阐明为什么在可观测宇宙中,[[物质]]比[[反物质]]多的问题,被称为[[重子不对称性]]问题。 <ref>[https://www.bbc.co.uk/news/science-environment-13666892 BBC News – Antimatter atoms are corralled even longer] . Bbc.co.uk. Retrieved on 2011-06-08.</ref>反氢是在[[粒子加速器]]中人工产生的。 1999年,[[NASA]] 估计每克反氢的制造成本为62.5兆美元 (相当于今天的{{Inflation|US|62.5|1999}}兆美元),使得它成为制造成本最高的物质。<ref name="NASA1999">{{cite web
|date=12 April 1999
|date=1999-04-12
|title=Reaching for the stars: Scientists examine using antimatter and fusion to propel future spacecraft
|title=Reaching for the stars: Scientists examine using antimatter and fusion to propel future spacecraft
|url=https://science.nasa.gov/science-news/science-at-nasa/1999/prop12apr99_1
|url=https://science.nasa.gov/science-news/science-at-nasa/1999/prop12apr99_1
|publisher=[[NASA]]
|publisher=[[NASA]]
|quote=Antimatter is the most expensive substance on Earth
|quote=Antimatter is the most expensive substance on Earth
|access-date=11 June 2010
|access-date=2010-06-11
|archive-date=2010-06-12
|archive-url=https://web.archive.org/web/20100612110153/http://science.nasa.gov/science-news/science-at-nasa/1999/prop12apr99_1/
|dead-url=no
}}</ref>这是由于每个实验产生的反氢极低,并且使用[[粒子加速器]]的[[机会成本]]高。
}}</ref>这是由于每个实验产生的反氢极低,并且使用[[粒子加速器]]的[[机会成本]]高。


第51行: 第48行:


== 实验历史 ==
== 实验历史 ==
粒子加速器在 1990年代侦测到热的反氢。 2002年,{{le|ATHENA}} 研究过冷的反氢。 它是2010年由 [[CERN]]<ref name=natrev>{{cite journal|doi=10.1038/468355a |pmid=21085144 |author=Reich, Eugenie Samuel |title=Antimatter held for questioning |journal=Nature |volume=468 |issue=7322 |pages=355 |year=2010 |bibcode=2010Natur.468..355R |doi-access=free }}</ref><ref>[http://www.eiroforum.org/activities/scientific_highlights/201112_CERN/index.html eiroforum.org – CERN: Antimatter in the trap] , December 2011, accessed 2012-06-08</ref>的反氢激光物理仪器({{le|ALPHA|ALPHA Collaboration}})小组首先捕获的, 然后测量了结构和其他重要特性。 <ref>{{cite web|url = http://physicsworld.com/cws/article/news/2012/mar/07/internal-structure-of-antihydrogen-probed-for-the-first-time|title = Internal Structure of Antihydrogen probed for the first time|date = March 7, 2012|website = Physics World|access-date = 2020-12-31|archive-date = 2017-07-30|archive-url = https://web.archive.org/web/20170730025529/http://physicsworld.com/cws/article/news/2012/mar/07/internal-structure-of-antihydrogen-probed-for-the-first-time|dead-url = no}}</ref>ALPHA、 AEGIS和 GBAR 计划进一步冷却和研究反氢原子。
粒子加速器在 1990年代侦测到热的反氢。 2002年,{{le|ATHENA}} 研究过冷的反氢。 它是2010年由 [[CERN]]<ref name=natrev>{{cite journal|doi=10.1038/468355a |pmid=21085144 |author=Reich, Eugenie Samuel |title=Antimatter held for questioning |journal=Nature |volume=468 |issue=7322 |pages=355 |year=2010 |bibcode=2010Natur.468..355R |doi-access=free }}</ref><ref>[http://www.eiroforum.org/activities/scientific_highlights/201112_CERN/index.html eiroforum.org – CERN: Antimatter in the trap] , December 2011, accessed 2012-06-08</ref>的反氢激光物理仪器({{le|ALPHA|ALPHA Collaboration}})小组首先捕获的, 然后测量了结构和其他重要特性。 <ref>{{cite web|url = http://physicsworld.com/cws/article/news/2012/mar/07/internal-structure-of-antihydrogen-probed-for-the-first-time|title = Internal Structure of Antihydrogen probed for the first time|date = 2012-03-07|website = Physics World|access-date = 2020-12-31}}</ref>ALPHA、 AEGIS和 GBAR 计划进一步冷却和研究反氢原子。


== 特征 ==
== 特征 ==
粒子物理学的[[CPT定理]]预测反氢原子具有的特征和正常的氢具有的许多特征一样;即[[质量]],[[磁矩]]和原子态跃迁频率相同(请参见“[[原子光谱]]”)。<ref>{{cite journal |url=http://focus.aps.org/story/v26/st1 |title=The Coolest Antiprotons |journal=Physical Review Focus |author=Grossman, Lisa |date=July 2, 2010 |volume=26 |issue=1 |access-date=2020-12-31 |archive-date=2010-07-04 |archive-url=https://web.archive.org/web/20100704021800/http://focus.aps.org/story/v26/st1 |dead-url=no }}</ref>举个例子,激发态的反氢原子会和激发态的普通氢原子发出一样颜色的光。 反氢原子应该会{{le|反物质的重力相互作用|Gravitational interaction of antimatter|吸引其它物质和反物质}},其作用力应与普通氢原子所承受的力相同。<ref name=natrev/>如果反物质具有负的[[重力质量]],这将是不正确的,尽管在经验上尚未得到证明,反氢有负[[重力质量]]的可能性很小(请参阅“ {{le|反物质的重力相互作用|Gravitational interaction of antimatter}}”)。<ref>{{cite magazine|url=http://www.technologyreview.com/view/423901/antihydrogen-trapped-for-1000-seconds|date=May 2, 2011|title=Antihydrogen trapped for a thousand seconds|magazine=Technology Review}}</ref>
粒子物理学的[[CPT定理]]预测反氢原子具有的特征和正常的氢具有的许多特征一样;即[[质量]],[[磁矩]]和原子态跃迁频率相同(请参见“[[原子光谱]]”)。<ref>{{cite journal |url=http://focus.aps.org/story/v26/st1 |title=The Coolest Antiprotons |journal=Physical Review Focus |author=Grossman, Lisa |date=2010-07-02 |volume=26 |issue=1 |access-date=2020-12-31 }}</ref>举个例子,激发态的反氢原子会和激发态的普通氢原子发出一样颜色的光。 反氢原子应该会{{le|反物质的重力相互作用|Gravitational interaction of antimatter|吸引其它物质和反物质}},其作用力应与普通氢原子所承受的力相同。<ref name=natrev/>如果反物质具有负的[[重力质量]],这将是不正确的,尽管在经验上尚未得到证明,反氢有负[[重力质量]]的可能性很小(请参阅“ {{le|反物质的重力相互作用|Gravitational interaction of antimatter}}”)。<ref>{{cite magazine|url=http://www.technologyreview.com/view/423901/antihydrogen-trapped-for-1000-seconds|date=2011-05-02|title=Antihydrogen trapped for a thousand seconds|magazine=Technology Review}}</ref>


当反氢接触到正物质时,它们会迅速[[湮灭]]。 正电子会和电子反应并湮灭,放出[[伽马射线]]。而反质子,由反夸克组成,会和由夸克组成的质子或中子反应并湮灭, 生成高能的[[π介子]],并衰变成[[缈子]]、[[中微子]]、[[正电子]]和 [[电子]]。 如果反氢原子存在于 [[真空]]的环境, 它们理论上可以永远存在。
当反氢接触到正物质时,它们会迅速[[湮灭]]。 正电子会和电子反应并湮灭,放出[[伽马射线]]。而反质子,由反夸克组成,会和由夸克组成的质子或中子反应并湮灭, 生成高能的[[π介子]],并衰变成[[缈子]]、[[中微子]]、[[正电子]]和 [[电子]]。 如果反氢原子存在于 [[真空]]的环境, 它们理论上可以永远存在。


作为一种反元素,反氢预计会有和氢一样的性质。<ref>{{cite web|url=https://www.bbc.co.uk/news/science-environment-17284822|title=Antihydrogen undergoes its first-ever measurement|first=Jason|last=Palmer|date=14 March 2012|via=www.bbc.co.uk|access-date=2020-12-31|archive-date=2019-10-07|archive-url=https://web.archive.org/web/20191007212112/https://www.bbc.co.uk/news/science-environment-17284822|dead-url=no}}</ref>举个例子,反氢在标准情况下会是一种无色气体,会和反氧反应,生成反水 ,{{Element2|anti=yes|Hydrogen}}{{sub|2}}{{Element2|anti=yes|Oxygen}}。
作为一种反元素,反氢预计会有和氢一样的性质。<ref>{{cite web|url=https://www.bbc.co.uk/news/science-environment-17284822|title=Antihydrogen undergoes its first-ever measurement|first=Jason|last=Palmer|date=2012-03-14|via=www.bbc.co.uk|access-date=2020-12-31}}</ref>举个例子,反氢在标准情况下会是一种无色气体,会和反氧反应,生成反水 ,{{Element2|anti=yes|Hydrogen}}{{sub|2}}{{Element2|anti=yes|Oxygen}}。


== 合成 ==
== 合成 ==
第一个反氢于 1995 年由[[瓦尔特·厄莱尔特]] 的队伍在 CERN<ref>{{cite news|title=Antiatoms: Here Today . . .|first=David H.|last=Freedman|newspaper=Discover Magazine|date=January 1997|url=http://discovermagazine.com/1997/jan/antiatomsheretod1029|accessdate=2021-01-02|archive-date=2019-07-21|archive-url=https://web.archive.org/web/20190721004446/http://discovermagazine.com/1997/jan/antiatomsheretod1029|dead-url=no}}</ref>用[[Charles Munger Jr]]、[[Stanley J Brodsky]] 和 [[Ivan Schmidt Andrade]]提出的方法首次合成。<ref>{{cite journal|title=Production of relativistic antihydrogen atoms by pair production with positron capture|last=Munger|first=Charles T.|s2cid=12149672|date=1994|journal=[[Physical Review D]]|volume=49|number=7|pages=3228–3235|doi=10.1103/physrevd.49.3228|pmid = 10017318|bibcode = 1994PhRvD..49.3228M }}</ref>
第一个反氢于 1995 年由[[瓦尔特·厄莱尔特]] 的队伍在 CERN<ref>{{cite news|title=Antiatoms: Here Today . . .|first=David H.|last=Freedman|newspaper=Discover Magazine|date=1997-01|url=http://discovermagazine.com/1997/jan/antiatomsheretod1029|accessdate=2021-01-02}}</ref>用[[Charles Munger Jr]]、[[Stanley J Brodsky]] 和 [[Ivan Schmidt Andrade]]提出的方法首次合成。<ref>{{cite journal|title=Production of relativistic antihydrogen atoms by pair production with positron capture|last=Munger|first=Charles T.|s2cid=12149672|date=1994|journal=[[Physical Review D]]|volume=49|number=7|pages=3228–3235|doi=10.1103/physrevd.49.3228|pmid = 10017318|bibcode = 1994PhRvD..49.3228M }}</ref>


在{{le|低能量反质子环|Low Energy Antiproton Ring|LEAR}}中,从一个[[粒子加速器]] 发射的反质子会射到[[氙]] [[原子簇]],<ref name="first-AH">{{cite journal |title=Production of Antihydrogen |first1=G. |last1=Baur |first2=G. |last2=Boero |first3=A. |last3=Brauksiepe |first4=A. |last4=Buzzo |first5=W. |last5=Eyrich |first6=R. |last6=Geyer |first7=D. |last7=Grzonka |first8=J. |last8=Hauffe |first9=K. |last9=Kilian |first10=M. |last10=LoVetere |first11=M. |last11=Macri |first12=M. |last12=Moosburger |first13=R. |last13=Nellen |first14=W. |last14=Oelert |first15=S. |last15=Passaggio |first16=A. |last16=Pozzo |first17=K. |last17=Röhrich |first18=K. |last18=Sachs |first19=G. |last19=Schepers |first20=T. |last20=Sefzick |first21=R.S. |last21=Simon |first22=R. |last22=Stratmann |first23=F. |last23=Stinzing |first24=M. |last24=Wolke |journal=[[Physics Letters B]] |volume=368 |year=1996 |pages=251ff |bibcode=1996PhLB..368..251B |doi=10.1016/0370-2693(96)00005-6 |issue=3 |url=http://ikpe1101.ikp.kfa-juelich.de/ps210/PL_paper_CERN_preprint.ps |access-date=2021-01-02 |archive-date=2018-07-21 |archive-url=https://web.archive.org/web/20180721162040/http://ikpe1101.ikp.kfa-juelich.de/ps210/PL_paper_CERN_preprint.ps |dead-url=no }}</ref>形成电子-正电子对。 反质子捕获一个正电子,形成反氢原子的概率为 {{val|e=-19}},因此该方法不适合用于实际生产(如所计算的)。 <ref>{{cite journal |url=http://faculty.tamuc.edu/cbertulani/cab/papers/BJP3.pdf |last1=Bertulani |first1=C.A. |last2=Baur |first2=G. |title=Pair production with atomic shell capture in relativistic heavy ion collisions |journal=Braz. J. Phys. |volume=18 |year=1988 |pages=559 |access-date=2021-01-02 |archive-date=2021-01-17 |archive-url=https://web.archive.org/web/20210117063718/http://faculty.tamuc.edu/cbertulani/cab/papers/BJP3.pdf |dead-url=no }}</ref><ref>{{cite journal|doi=10.1016/0370-1573(88)90142-1|title=Electromagnetic processes in relativistic heavy ion collisions|journal=Physics Reports|volume=163|issue=5–6|pages=299|year=1988|last1=Bertulani|first1=Carlos A.|last2=Baur|first2=Gerhard|bibcode=1988PhR...163..299B|url=http://juser.fz-juelich.de/record/845594/files/J%C3%BCl_2163_Bertulani.pdf|access-date=2021-01-02|archive-date=2018-07-20|archive-url=https://web.archive.org/web/20180720161226/http://juser.fz-juelich.de/record/845594/files/J%C3%BCl_2163_Bertulani.pdf|dead-url=no}}</ref><ref name="first-calc">{{cite journal |title=Electromagnetic Pair Production with Capture |last1=Aste |first1=Andreas |last2=Hencken |first2=Kai |last3=Trautmann |first3=Dirk |last4=Baur |first4=G. |journal=Physical Review A |volume=50 |year=1993 |pages=3980–3983 |bibcode=1994PhRvA..50.3980A |doi=10.1103/PhysRevA.50.3980 |issue=5 |pmid=9911369 |url=http://edoc.unibas.ch/9325/1/20100604145900_4c08f8941070d.pdf |access-date=2021-01-02 |archive-date=2018-07-20 |archive-url=https://web.archive.org/web/20180720113105/http://edoc.unibas.ch/9325/1/20100604145900_4c08f8941070d.pdf |dead-url=no }}</ref>[[费米国立加速器实验室]] 测量了一些不同的横截面 ,<ref>{{cite journal|last1=Blanford|first1=G.|first2=D.C. |last2=Christian |first3=K. |last3=Gollwitzer |first4=M. |last4=Mandelkern |first5=C.T. |last5=Munger |first6=J. |last6=Schultz |first7=G. |last7=Zioulas|s2cid=58942287|date=December 1997|title=Observation of Atomic Antihydrogen|journal=Physical Review Letters|publisher=Fermi National Accelerator Laboratory|quote=FERMILAB-Pub-97/398-E E862 ... p and H experiments| doi=10.1103/PhysRevLett.80.3037 | bibcode=1997APS..APR.C1009C|volume=80|issue=14|pages=3037}}</ref>与[[量子电动力学]]的预测一致。 <ref>{{cite journal|last1=Bertulani|first1=C.A.|last2=Baur|first2=G. |title=Antihydrogen production and accuracy of the equivalent photon approximation|journal=Physical Review D|volume=58|issue=3|pages=034005|doi=10.1103/PhysRevD.58.034005|arxiv=hep-ph/9711273|year=1998|bibcode=1998PhRvD..58c4005B|s2cid=11764867}}</ref>两者均导致高能或高温的反原子的反应,不适合进行详细研究。
在{{le|低能量反质子环|Low Energy Antiproton Ring|LEAR}}中,从一个[[粒子加速器]] 发射的反质子会射到[[氙]] [[原子簇]],<ref name="first-AH">{{cite journal |title=Production of Antihydrogen |first1=G. |last1=Baur |first2=G. |last2=Boero |first3=A. |last3=Brauksiepe |first4=A. |last4=Buzzo |first5=W. |last5=Eyrich |first6=R. |last6=Geyer |first7=D. |last7=Grzonka |first8=J. |last8=Hauffe |first9=K. |last9=Kilian |first10=M. |last10=LoVetere |first11=M. |last11=Macri |first12=M. |last12=Moosburger |first13=R. |last13=Nellen |first14=W. |last14=Oelert |first15=S. |last15=Passaggio |first16=A. |last16=Pozzo |first17=K. |last17=Röhrich |first18=K. |last18=Sachs |first19=G. |last19=Schepers |first20=T. |last20=Sefzick |first21=R.S. |last21=Simon |first22=R. |last22=Stratmann |first23=F. |last23=Stinzing |first24=M. |last24=Wolke |journal=[[Physics Letters B]] |volume=368 |year=1996 |pages=251ff |bibcode=1996PhLB..368..251B |doi=10.1016/0370-2693(96)00005-6 |issue=3 |url=http://ikpe1101.ikp.kfa-juelich.de/ps210/PL_paper_CERN_preprint.ps |access-date=2021-01-02 }}</ref>形成电子-正电子对。 反质子捕获一个正电子,形成反氢原子的概率为 {{val|e=-19}},因此该方法不适合用于实际生产(如所计算的)。 <ref>{{cite journal |url=http://faculty.tamuc.edu/cbertulani/cab/papers/BJP3.pdf |last1=Bertulani |first1=C.A. |last2=Baur |first2=G. |title=Pair production with atomic shell capture in relativistic heavy ion collisions |journal=Braz. J. Phys. |volume=18 |year=1988 |pages=559 |access-date=2021-01-02 }}</ref><ref>{{cite journal|doi=10.1016/0370-1573(88)90142-1|title=Electromagnetic processes in relativistic heavy ion collisions|journal=Physics Reports|volume=163|issue=5–6|pages=299|year=1988|last1=Bertulani|first1=Carlos A.|last2=Baur|first2=Gerhard|bibcode=1988PhR...163..299B|url=http://juser.fz-juelich.de/record/845594/files/J%C3%BCl_2163_Bertulani.pdf|access-date=2021-01-02}}</ref><ref name="first-calc">{{cite journal |title=Electromagnetic Pair Production with Capture |last1=Aste |first1=Andreas |last2=Hencken |first2=Kai |last3=Trautmann |first3=Dirk |last4=Baur |first4=G. |journal=Physical Review A |volume=50 |year=1993 |pages=3980–3983 |bibcode=1994PhRvA..50.3980A |doi=10.1103/PhysRevA.50.3980 |issue=5 |pmid=9911369 |url=http://edoc.unibas.ch/9325/1/20100604145900_4c08f8941070d.pdf |access-date=2021-01-02 }}</ref>[[费米国立加速器实验室]] 测量了一些不同的横截面 ,<ref>{{cite journal|last1=Blanford|first1=G.|first2=D.C. |last2=Christian |first3=K. |last3=Gollwitzer |first4=M. |last4=Mandelkern |first5=C.T. |last5=Munger |first6=J. |last6=Schultz |first7=G. |last7=Zioulas|s2cid=58942287|date=1997-12|title=Observation of Atomic Antihydrogen|journal=Physical Review Letters|publisher=Fermi National Accelerator Laboratory|quote=FERMILAB-Pub-97/398-E E862 ... p and H experiments| doi=10.1103/PhysRevLett.80.3037 | bibcode=1997APS..APR.C1009C|volume=80|issue=14|pages=3037}}</ref>与[[量子电动力学]]的预测一致。 <ref>{{cite journal|last1=Bertulani|first1=C.A.|last2=Baur|first2=G. |title=Antihydrogen production and accuracy of the equivalent photon approximation|journal=Physical Review D|volume=58|issue=3|pages=034005|doi=10.1103/PhysRevD.58.034005|arxiv=hep-ph/9711273|year=1998|bibcode=1998PhRvD..58c4005B|s2cid=11764867}}</ref>两者均导致高能或高温的反原子的反应,不适合进行详细研究。


随后,CERN建立了[[反质子减速器]](AD),以支持朝着低能反氢的方向努力,以测试基本对称性。反质子减速器将提供给几个CERN组。CERN预计其设施将能够每分钟产生1000万个反质子。 <ref name=madsen>{{cite journal
随后,CERN建立了[[反质子减速器]](AD),以支持朝着低能反氢的方向努力,以测试基本对称性。反质子减速器将提供给几个CERN组。CERN预计其设施将能够每分钟产生1000万个反质子。 <ref name=madsen>{{cite journal
第82行: 第79行:
{{infobox element isotopes/isotopes stable| mn=2 | sym=反氘 | na=人造{{查證請求}} | n=1 | link=氘#反氘 | firstlinks=no | stable_data=理論上穩定{{查證請求}},未有實驗測定 }}
{{infobox element isotopes/isotopes stable| mn=2 | sym=反氘 | na=人造{{查證請求}} | n=1 | link=氘#反氘 | firstlinks=no | stable_data=理論上穩定{{查證請求}},未有實驗測定 }}
}}
}}
人們亦可利用同樣方法製造[[氘#反氘|反氘]](<span style="text-decoration: overline">D</span>;<sup>2</sup><span style="text-decoration:overline;">H</span>)、[[反氚]](<span style="text-decoration: overline">T</span>;<sup>3</sup><span style="text-decoration:overline;">H</span>),或甚至是[[反氦]](<span style="text-decoration: overline">He</span>),只是其難度更高。在2011年4月29日出版的英國《自然》雜誌上刊登了成功合成反氦-4的消息,方法是將兩個接近光速的金原子核對撞,通過篩選共探測到18個反氦-4的信號。反氘、<ref>{{Cite journal|author = Massam, T|year = 1965 |title = Experimental observation of antideuteron production |journal = Il Nuovo Cimento |volume = 39|issue = 1 |pages = 10–14 |doi = 10.1007/BF02814251|last2 = Muller|first2 = Th.|last3 = Righini|first3 = B.|last4 = Schneegans|first4 = M.|last5 = Zichichi|first5 = A.|bibcode = 1965NCimS..39...10M |s2cid = 122952224 }}</ref><ref>{{Cite journal|author = Dorfan, D. E|date=June 1965|title = Observation of Antideuterons|journal = Phys. Rev. Lett.|volume = 14|issue = 24 |pages = 1003–1006| doi = 10.1103/PhysRevLett.14.1003|last2 = Eades|first2 = J.|last3 = Lederman|first3 = L. M.|last4 = Lee|first4 = W.|last5 = Ting|first5 = C. C.|bibcode=1965PhRvL..14.1003D}}</ref>反氦-3 ({{SimpleNuclide2|anti=yes|helium|3}})<ref>{{cite journal|author=Antipov, Y.M. |year=1974|title=Observation of antihelium3 (in Russian)|journal=Yadernaya Fizika|volume=12 |page=311|display-authors=etal}}</ref><ref>{{cite journal|author=Arsenescu, R. |year=2003|title=Antihelium-3 production in lead-lead collisions at 158 ''A'' GeV/''c''|journal=[[New Journal of Physics]]|volume=5 |issue=1|page=1|doi=10.1088/1367-2630/5/1/301|bibcode = 2003NJPh....5....1A|display-authors=etal|doi-access=free}}</ref>和反氦-4 ({{SimpleNuclide2|anti=yes|helium|4}}) 的原子核<ref>{{cite journal|author=Agakishiev, H. |year=2011|title=Observation of the antimatter helium-4 nucleus|arxiv=1103.3312|bibcode = 2011Natur.473..353S|volume= 473|doi=10.1038/nature10079|pmid=21516103|issue=7347|journal=Nature|pages=353–6|s2cid=118484566|display-authors=etal}}</ref>,以如此高的速度产生了它们的相应原子的合成,带来了几个技术障碍。
人們亦可利用同樣方法製造[[氘#反氘|反氘]](<span style="text-decoration: overline">D</span>;<sup>2</sup><span style="text-decoration:overline;">H</span>)、[[反氚]](<span style="text-decoration: overline">T</span>;<sup>3</sup><span style="text-decoration:overline;">H</span>),或甚至是[[反氦]](<span style="text-decoration: overline">He</span>),只是其難度更高。在2011年4月29日出版的英國《自然》雜誌上刊登了成功合成反氦-4的消息,方法是將兩個接近光速的金原子核對撞,通過篩選共探測到18個反氦-4的信號。反氘、<ref>{{Cite journal|author = Massam, T|year = 1965 |title = Experimental observation of antideuteron production |journal = Il Nuovo Cimento |volume = 39|issue = 1 |pages = 10–14 |doi = 10.1007/BF02814251|last2 = Muller|first2 = Th.|last3 = Righini|first3 = B.|last4 = Schneegans|first4 = M.|last5 = Zichichi|first5 = A.|bibcode = 1965NCimS..39...10M |s2cid = 122952224 }}</ref><ref>{{Cite journal|author = Dorfan, D. E|date=1965-06|title = Observation of Antideuterons|journal = Phys. Rev. Lett.|volume = 14|issue = 24 |pages = 1003–1006| doi = 10.1103/PhysRevLett.14.1003|last2 = Eades|first2 = J.|last3 = Lederman|first3 = L. M.|last4 = Lee|first4 = W.|last5 = Ting|first5 = C. C.|bibcode=1965PhRvL..14.1003D}}</ref>反氦-3 ({{SimpleNuclide2|anti=yes|helium|3}})<ref>{{cite journal|author=Antipov, Y.M. |year=1974|title=Observation of antihelium3 (in Russian)|journal=Yadernaya Fizika|volume=12 |page=311|display-authors=etal}}</ref><ref>{{cite journal|author=Arsenescu, R. |year=2003|title=Antihelium-3 production in lead-lead collisions at 158 ''A'' GeV/''c''|journal=[[New Journal of Physics]]|volume=5 |issue=1|page=1|doi=10.1088/1367-2630/5/1/301|bibcode = 2003NJPh....5....1A|display-authors=etal|doi-access=free}}</ref>和反氦-4 ({{SimpleNuclide2|anti=yes|helium|4}}) 的原子核<ref>{{cite journal|author=Agakishiev, H. |year=2011|title=Observation of the antimatter helium-4 nucleus|arxiv=1103.3312|bibcode = 2011Natur.473..353S|volume= 473|doi=10.1038/nature10079|pmid=21516103|issue=7347|journal=Nature|pages=353–6|s2cid=118484566|display-authors=etal}}</ref>,以如此高的速度产生了它们的相应原子的合成,带来了几个技术障碍。


== 參看 ==
== 參看 ==
第91行: 第88行:
== 參考文獻 ==
== 參考文獻 ==
{{reflist |refs=
{{reflist |refs=
<ref name=Ahmadi2016>{{cite journal |url=http://www.nature.com/nature/journal/vaap/ncurrent/full/nature21040.html |last=Ahmadi |first=M et al |title=Observation of the 1S–2S transition in trapped antihydrogen |journal=''[[自然 (雜誌)|Nature]]'' |doi=10.1038/nature21040 |date=2016-12-19 |accessdate=2016-12-21 |language=en |archive-date=2016-12-30 |archive-url=https://web.archive.org/web/20161230185227/http://www.nature.com/nature/journal/vaap/ncurrent/full/nature21040.html |dead-url=no }}</ref>
<ref name=Ahmadi2016>{{cite journal |url=http://www.nature.com/nature/journal/vaap/ncurrent/full/nature21040.html |last=Ahmadi |first=M et al |title=Observation of the 1S–2S transition in trapped antihydrogen |journal=''[[自然 (雜誌)|Nature]]'' |doi=10.1038/nature21040 |date=2016-12-19 |accessdate=2016-12-21 |language=en }}</ref>
<ref name=Castelvecchi2016>{{cite news |last=Castelvecchi |first=Davide |url=http://www.nature.com/news/ephemeral-antimatter-atoms-pinned-down-in-milestone-laser-test-1.21193 |title=Ephemeral antimatter atoms pinned down in milestone laser test |publisher=''[[自然 (雜誌)|Nature]]'' |date=2016-12-19 |accessdate=2016-12-20 |language=en |archive-date=2016-12-20 |archive-url=https://web.archive.org/web/20161220221543/http://www.nature.com/news/ephemeral-antimatter-atoms-pinned-down-in-milestone-laser-test-1.21193 |dead-url=no }}</ref>
<ref name=Castelvecchi2016>{{cite news |last=Castelvecchi |first=Davide |url=http://www.nature.com/news/ephemeral-antimatter-atoms-pinned-down-in-milestone-laser-test-1.21193 |title=Ephemeral antimatter atoms pinned down in milestone laser test |publisher=''[[自然 (雜誌)|Nature]]'' |date=2016-12-19 |accessdate=2016-12-20 |language=en }}</ref>
}}
}}


== 外部連結 ==
== 外部連結 ==
* [https://web.archive.org/web/20041023060510/http://www.sciscape.org/news_detail.php?news_id=431 捕捉反氫原子 (Sciscape.org)]
* [http://www.sciscape.org/news_detail.php?news_id=431 捕捉反氫原子 (Sciscape.org)]
* [https://web.archive.org/web/20051124092846/http://www.bjkp.gov.cn/kxbl/wzjg/k21021-05.htm 欧洲科学家制造出大量反氢物质流]
* [http://www.bjkp.gov.cn/kxbl/wzjg/k21021-05.htm 欧洲科学家制造出大量反氢物质流]
* [http://aeea.nmns.edu.tw/2001/0108/ap010811.html 反氫原子是如何創生的?]
* [http://aeea.nmns.edu.tw/2001/0108/ap010811.html 反氫原子是如何創生的?]
* [https://web.archive.org/web/20060208031928/http://www.ihep.ac.cn/kejiyuandi/qianyan/021009.htm 欧洲核子研究中心制造出大量反物质]
* [http://www.ihep.ac.cn/kejiyuandi/qianyan/021009.htm 欧洲核子研究中心制造出大量反物质]
* [https://web.archive.org/web/20060819044002/http://tech.tom.com/Archive/1121/1122/2002/10/30-60606.html 国际科学家小组观察到反物质原子内部结构]
* [http://tech.tom.com/Archive/1121/1122/2002/10/30-60606.html 国际科学家小组观察到反物质原子内部结构]
* {{cite web|last=Merrifield|first=Michael|title={{Element2|anti=yes|Hydrogen}} Antihydrogen|url=http://www.sixtysymbols.com/videos/antihydrogen.htm|work=Sixty Symbols|publisher=[[Brady Haran]] for the [[University of Nottingham]]|author2=Copeland, Ed|access-date=2021-01-02|archive-date=2019-08-24|archive-url=https://web.archive.org/web/20190824041736/http://www.sixtysymbols.com/videos/antihydrogen.htm|dead-url=no}}
* {{cite web|last=Merrifield|first=Michael|title={{Element2|anti=yes|Hydrogen}} Antihydrogen|url=http://www.sixtysymbols.com/videos/antihydrogen.htm|work=Sixty Symbols|publisher=[[Brady Haran]] for the [[University of Nottingham]]|author2=Copeland, Ed|access-date=2021-01-02|||}}


{{Particles}}
{{Particles}}