阿伏伽德罗常数

这是特色条目,点此获取更多信息。
本页使用了标题或全文手工转换,现处于中国大陆简体模式
求闻百科,共笔求闻
阿莫迪欧·阿伏伽德罗

物理学化学中,阿伏伽德罗常数(符号:;英语:Avogadro constant)的定义是一摩尔物质中所含的组成粒子数(一般为原子分子[1],记做NA。因此,它是联系粒子摩尔质量(即一摩尔时的质量),及其质量间的比例系数[2][3]。其数值为:

  • 国际单位制数值(2019年,人为定义):6.02214076×1023 mol−1[4]
  • CODATA建议数值(2006年,基于实际测量所得):6.022140857(74)×1023 mol−1[2][5][6]

较早的针对化学数量的定义中牵涉到另一个数,阿伏伽德罗数(英语:Avogadro number),历史上这个词与阿伏伽德罗常量有着密切的关系。一开始阿伏伽德罗数由让·佩兰定义为一克原子氢所含的分子数;后来则重新定义为12克碳-12所含的原子数量[7]。因此,阿伏伽德罗数是一个无量纲的数量,与用基本单位表示的阿伏伽德罗常量数值一致。在国际单位制(SI)将摩尔加入基本单位后,所有化学数量的概念都必需被重定义。阿伏伽德罗数及其定义已被阿伏伽德罗常量取代。

各种单位下的数值[2]
6.022140857(74)×1023 mol−1
2.73159734(12)×1026 lb-mol−1
1.707248434(77)×1025 oz-mol−1

历史

阿伏伽德罗常数以19世纪初期的意大利化学家阿莫迪欧·阿伏伽德罗命名,在1811年他率先提出,气体的体积(在某温度与压力下)与所含的分子原子数量成正比,与该气体的性质无关[8]。法国物理学家让·佩兰于1909年提出,把常数命名为阿伏伽德罗常量来纪念他[9]。佩兰于1926年获颁诺贝尔物理学奖,他研究一大课题就是各种量度阿伏伽德罗常量的方法[10]

阿伏伽德罗常量的值,最早由奥地利化学及物理学家约翰·约瑟夫·洛施米特于1865年所得,他透过计算某固定体积气体内所含的分子数,成功估计出空气中分子的平均直径[11]。前者的数值,即理想气体数量密度,叫“洛施米特常数”,就是以他命名的,这个常数大约与阿伏伽德罗常量成正比。由于阿伏伽德罗常量有时会用L表示,所以不要与洛施米特(Loschmidt)的混淆,而在德语文献中可能时会把它们都叫作“洛施米特常数”,只能用计量单位来分辨提及的到底是哪一个[12]

要准确地量度出阿伏伽德罗常量的值,需要在宏观和微观尺度下,用同一个单位,去量度同一个物理量。这样做在早年并不可行,直到1910年,罗伯特·密立根成功量度到一个电子的电荷,才能够借助单个电子的电荷来做到微观量度。一摩尔电子的电荷是一个常数,叫法拉第常数,在麦可·法拉第于1834年发表的电解研究中有提及过。把一摩尔电子的电荷,除以单个电子的电荷,可得阿伏伽德罗常量[13]。自1910年以来,新的计算能更准确地确定,法拉第常数及基本电荷的值(见下文#测量)。

让·佩兰最早提出阿伏伽德罗数()这样一个名字,来代表一克分子的(根据当时的定义,即32克整的氧)[9],而这个词至今仍被广泛使用,尤其是入门课本[14]改用阿伏伽德罗常量()这个名字,是1971年摩尔成为国际单位制基本单位[15]后的事,因为自此物质的量就被认定是一个独立的量纲[16]。于是,阿伏伽德罗数再也不是纯数,因为带一个计量单位:摩尔的倒数(mol−1)。

尽管不用摩尔来量度物质的量是挺罕见的,但是阿伏伽德罗常量可用其他单位表示,如磅摩尔(lb-mol)或盎司摩尔(oz-mol)。

Ib-mol−1
oz-mol−1

科学上的一般用途

阿伏伽德罗常数是一个比例因数,联系自然中宏观与微观(原子尺度)的观测。它本身就为其他常数及性质提供了关系式。例如,它确立了气体常数R玻耳兹曼常数间的关系式,

= 8.31446261815324 J⋅K−1⋅mol−1

以及法拉第常数F基本电荷的关系式,

= 96485.3321233100184 C/mol

同时,阿伏伽德罗常数是原子质量单位u)定义的一部分,

kg

其中摩尔质量常数(即国际单位制下的1g/mol)。

测量

电量分析

最早能准确地测量出阿伏伽德罗常量的方法,是基于电量分析(又称库仑法)理论。原理是测量法拉第常数,即一摩尔电子所带的电荷,然后将它除以基本电荷,可得阿伏伽德罗常量。

国家标准技术研究所(NIST)的鲍瓦尔与戴维斯(Bower & Davis)实验[17]在这一方法中堪称经典[18],原实验中电解槽的阳极是银制的,通电后银会“溶解”,实验中电量计所量度的就是这些单价银离子所带的电量,电解液为过氯酸,内含小量过氯酸银。设电流的大小为,通电时间为,从阳极中离开的银原子质量为及银的原子重量为,则法拉第常数为:

原实验中部分银原子会因机械性摩擦而脱落,而非通过电解,所以想通过银电极的消耗量来获得因电解而消耗的银原子质量,就必须要解决摩擦造成的质量消耗问题,同时又不能大幅增加实验误差,为此NIST的科学家们设计出一种能补偿这个质量的方法:他们改在电解质中添加已知质量的银离子,并使用制的阴极,银离子会在阴极上形成镀层,通过观测镀层来得知实验进程。法拉第常数的惯用值为C/mol[19],对应的阿伏伽德罗常量值为6.022 140 857 (74)×1023 mol−1:两个数值的相对标准不确定度皆小于1.3×10−6

电子质量测量

科学技术数据委员会(CODATA)负责发表国际用的物理常数数值。它在计量阿伏伽德罗常量时[20],用到电子的摩尔质量,与电子质量间的比值:

电子的相对原子质量,是一种可直接测量的量,而摩尔质量常数,在国际单位制中其大小是有定义的,不用测量。然而,要得出电子的静止质量,必须通过计算,其中要使用其他需要测量的常数[20]

由下表2014年国际科学技术数据委员会(CODATA)的值[21],可见限制阿伏伽德罗常量精确度的主要因素,是普朗克常数,因为计算用的其他常数都相对地准确。

常数 符号 2014年的数值 相对标准的不确定度
相关系数
电子的相对原子质量 5.485 799 090 70(16)×10–4 u 2.9×10–11 0.0011
摩尔质量常数 0.001 kg/mol = 1g/mol 定义
里德伯常数 10 973 731.568 508(65) m−1 5.9×10–12 -0.0002
普朗克常数 6.626 070 040(81)×10–34 J·s 1.2×10–8 -0.9993
光速 299 792 458 m/s 定义
精细结构常数 7.297 352 5664(17)×10–3 2.3×10–10 0.0193
阿伏伽德罗常量 6.022 140 857(74)×1023 mol−1 1.2×10–8 1

X射线晶体密度法(XRCD)

图为晶胞球棒模型X射线衍射可以测量到晶胞参数a,其数值可用于计算阿伏伽德罗常量的值。

运用X射线晶体学,是一种能得出阿伏伽德罗常量的现代方法[22]。现今的商业设备可以生产出单晶硅,产物有着极高的纯度,及极少晶格缺陷。这种方法把阿伏伽德罗常量定为一个比值,摩尔体积与原子体积间的比值:

,其中,而则为每一体积为体积的晶胞内所含的原子数。

硅的晶胞有着由8个原子组成立方式充填排列,因此晶胞单元的体积,可由测量一个晶胞参数得出,而这个参数就是立方的边长[23]

实际上,所测量的距离叫(Si),即密勒指数所述的各平面间的距离,相等于。2010年CODATA的(Si)数值为192.0155714(32) pm,相对不确定度为1.6×10−8[24],对应的晶胞体积为1.60193329(77)×10−28 m3

有必要测量样本的同位素成分比例,并在计算时考虑在内。硅共有三种稳定的同位素(,, ),它们在自然界的比例差异,比其他测量常数的不确定度还要大。由于三种核素的相对原子质量有着确高的准确度,所以晶体样本的原子重量会经由计算得出。经由与测量出的样本密度,可得求阿伏伽德罗常量所需的摩尔体积:

其中为摩尔质量常数。根据2014年CODATA的数值,硅的摩尔体积为12.058 832 14(61),相对标准不确定度为5.1×10−8[25]

根据2010年CODATA的推荐值,透过X射线晶体密度法所得出的阿伏伽德罗常量,其相对不确定度为8.1×10−8,比电子质量法高,约为其一倍半。

国际阿伏伽德罗协作组织

图为澳洲精密光学中心 的一名光学仪器专家,他手持的正是国际阿伏伽德罗协作组织的一千克单晶体硅制球体。

国际阿伏伽德罗协作组织(IAC),又称“阿伏伽德罗计划”,是各国计量局于1990年代初开始建立的协作组织,目标是透过X射线晶体密度法,将相对不确定度降低至低于2×10−8的水平[26]。这个计划是千克新定义计划的一部分,千克的新定义将会由通用的物理常数组成,取代现行的国际千克原器。而阿伏伽德罗计划同时会与称量千克原器的功率天平测量互补,共同提升普朗克常数的精确度[27][28]。在现行的国际单位制(SI)定义下,测量阿伏伽德罗常量,就是间接地测量普朗克常数:

测量对象是一个受过高度打磨的硅制球体,重量为一千克整。使用球体是因为这样做会简化其大小的测量(因此密度也是),以及将无可避免的表面氧化层效应最小化。最早期的测量,用的是有着自然同位素成分的硅球,常数的相对不确定度为3.1×10−7[29][30][31]。这些最早期的数值,与从瓦特秤来的普朗克常数测量结果并不一致,尽管科学家们认为他们已经知道差异的成因[28]

早期数值的剩余不确定性,来源为硅同位素构成的测量,这个测量是用于计算原子重量的,因此在2007年种出了一4.8千克的同位素浓缩硅单晶(99.94%[32][33],然后从中切割出两个各一千克的球体。球体的直径测量在重复时相差小于0.3nm,重量的不确定度为3μg[34]。报告论文于2011年1月时发表,概括了国际阿伏伽德罗协作组织的研究结果,同时提交了对阿伏伽德罗常量的测量数值,为 6.02214078(18)×1023 mol−1[35],与瓦特秤的数值一致,但更准确[35]

参看

参考资料

  1. International Union of Pure and Applied Chemistry (1993). Quantities, Units and Symbols in Physical Chemistry, 2nd edition, Oxford: Blackwell Science. ISBN 0-632-03583-8. pp. 4. 存档副本 (PDF). [2010-10-25].  Electronic version.]
  2. 2.0 2.1 2.2 Mohr, Peter J.; Taylor, Barry N.; Newell, David B. CODATA Recommended Values of the Fundamental Physical Constants: 2006 (PDF). Rev. Mod. Phys. 2008, 80: 633–730 [2011-08-11]. Bibcode:2008RvMP...80..633M. doi:10.1103/RevModPhys.80.633. 
  3. Avogadro constant. [2011-08-11]. 
  4. 26th meeting of the CGPM. Draft Resolution A "On the revision of the International System of units (SI)" to be submitted to the CGPM at its 26th meeting (2018) (PDF). CGPM. 2018-11 [2018-11-19]. 
  5. International Union of Pure and Applied Chemistry Commission on Atomic Weights and Isotopic Abundances, P.; Peiser, H. S., Atomic Weight: The Name, Its History, Definition and Units (PDF), Pure and Applied Chemistry, 1992, 64 (10): 1535–43 [2006-12-28], doi:10.1351/pac199264101535.  已忽略文本“Pure Appl. Chem.” (帮助)
  6. International Union of Pure and Applied Chemistry Commission on Quantities and Units in Clinical Chemistry, H. P.; International Federation of Clinical Chemistry Committee on Quantities and Units, Glossary of Terms in Quantities and Units in Clinical Chemistry (IUPAC-IFCC Recommendations 1996) (PDF), Pure and Applied Chemistry, 1996, 68 (4): 957–1000 [2006-12-28], doi:10.1351/pac199668040957.  已忽略文本“Pure Appl. Chem.” (帮助);
  7. International Bureau of Weights and Measures, The International System of Units (SI) (PDF) 8th: 114–15, 2006, ISBN 92-822-2213-6 (英语) 
  8. Avogadro, Amadeo, Essai d'une maniere de determiner les masses relatives des molecules elementaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons, Journal de Physique, 1811, 73: 58–76.  English translation .
  9. 9.0 9.1 Perrin, Jean, Mouvement brownien et réalité moléculaire, Annales de Chimie et de Physique, 8e Série, 1909, 18: 1–114.  Extract in English, translation by Frederick Soddy .
  10. Oseen, C.W. (December 10, 1926). Presentation Speech for the 1926 Nobel Prize in Physics .
  11. Loschmidt, J., Zur Grösse der Luftmoleküle, Sitzungsberichte der kaiserlichen Akademie der Wissenschaften Wien, 1865, 52 (2): 395–413.  English translation .
  12. Virgo, S.E., Loschmidt's Number, Science Progress, 1933, 27: 634–49. 
  13. NIST Introduction to physical constants. [2011-08-11]. 
  14. See, e.g., Kotz, John C.; Treichel, Paul M.; Townsend, John R., Chemistry and Chemical Reactivity 7th, Brooks/Cole, 2008 [2011-08-11], ISBN 0495387037 
  15. Resolution 3, 14th General Conference of Weights and Measures (CGPM), 1971.
  16. de Bièvre, P.; Peiser, H.S., 'Atomic Weight'—The Name, Its History, Definition, and Units (PDF), Pure Appl. Chem., 1992, 64 (10): 1535–43 [2011-08-11], doi:10.1351/pac199264101535. 
  17. V.E. Bower; R.S. Davis. The electrochemical equivalent of pure silver - a value for Faraday. J. Res. Natl. Bur. Stand. 1980, 85: 175–191. 
  18. This account is based on the review in Mohr, Peter J.; Taylor, Barry N. CODATA recommended values of the fundamental physical constants: 1998. J. Phys. Chem. Ref. Data. 1999, 28 (6): 1713–1852. doi:10.1103/RevModPhys.72.351. 
  19. Search Results. physics.nist.gov. [2016-12-11]. 
  20. 20.0 20.1 Mohr, Peter J.; Taylor, Barry N. CODATA recommended values of the fundamental physical constants: 2002. Rev. Mod. Phys. 2005, 77 (1): 1–107. Bibcode:2005RvMP...77....1M. doi:10.1103/RevModPhys.77.1. 
  21. P.J. Mohr, B.N. Taylor, and D.B. Newell (2011), "The 2010 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 6.0). This database was developed by J. Baker, M. Douma, and S. Kotochigova. Available: http://physics.nist.gov/constants . National Institute of Standards and Technology, Gaithersburg, MD 20899.
  22. Ian Robinson 作,郭凯声 译:1千克究竟有多重,载《环球科学》2007年1月号,70-78页,ISSN 1673-5153
  23. Mineralogy Database. Unit Cell Formula. 2000–2005 [2007-12-09]. 
  24. P.J. Mohr, B.N. Taylor, and D.B. Newell (2011), "The 2010 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 6.0). This database was developed by J. Baker, M. Douma, and S. Kotochigova. Available: http://physics.nist.gov/constants . National Institute of Standards and Technology, Gaithersburg, MD 20899. Direct link to value
  25. P.J. Mohr, B.N. Taylor, and D.B. Newell (2011), "The 2010 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 6.0). This database was developed by J. Baker, M. Douma, and S. Kotochigova. Available: http://physics.nist.gov/constants . National Institute of Standards and Technology, Gaithersburg, MD 20899. Direct link to value
  26. Avogadro Project, National Physical Laboratory 
  27. Leonard, B. P., On the role of the Avogadro constant in redefining SI units for mass and amount of substance, Metrologia, 2007, 44 (1): 82–86, doi:10.1088/0026-1394/44/1/012 .
  28. 28.0 28.1 Jabbour, Zeina J., Getting Closer to Redefining The Kilogram, Weighing & Measurement Magazine, 2009, (October): 24–26 [2011-08-12] .
  29. Becker, Peter, Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal, Metrologia, 2003, 40 (6): 366–75, doi:10.1088/0026-1394/40/6/008 .
  30. Fujii, K.; Waseda, A.; Kuramoto, N.; Mizushima, S.; Becker, P.; Bettin, H.; Nicolaus, A.; Kuetgens, U.; Valkiers, S., Present State of the Avogadro Constant Determination From Silicon Crystals With Natural Isotopic Compositions, IEEE Trans. Instrum. Meas., 2005, 54 (2): 854–59, doi:10.1109/TIM.2004.843101 .
  31. Williams, E. R., Toward the SI System Based on Fundamental Constants: Weighing the Electron, IEEE Trans. Instrum. Meas., 2007, 56 (2): 646–50, doi:10.1109/TIM.2007.890591 .
  32. Becker, P.; Schiel, D.; Pohl, H.-J.; Kaliteevski, A. K.; Godisov, O. N.; Churbanov, M. F.; Devyatykh, G. G.; Gusev, A. V.; Bulanov, A. D., Large-scale production of highly enriched 28Si for the precise determination of the Avogadro constant, Meas. Sci. Technol., 2006, 17 (7): 1854–60, doi:10.1088/0957-0233/17/7/025 .
  33. Devyatykh, G. G.; Bulanov, A. D.; Gusev, A. V.; Kovalev, I. D.; Krylov, V. A.; Potapov, A. M.; Sennikov, P. G.; Adamchik, S. A.; Gavva, V. A., Dokl. Akad. Nauk, 2008, 421 (1): 61–64  缺少或|title=为空 (帮助); Devyatykh, G. G.; Bulanov, A. D.; Gusev, A. V.; Kovalev, I. D.; Krylov, V. A.; Potapov, A. M.; Sennikov, P. G.; Adamchik, S. A.; Gavva, V. A., High-Purity Single-Crystal Monoisotopic Silicon-28 for Precise Determination of Avogadro's Number, Dokl. Chem., 2008, 421 (1): 157–60, doi:10.1134/S001250080807001X .
  34. Report of the 11th meeting of the Consultative Committee for Mass and Related Quantities (CCM) (PDF), International Bureau of Weights and Measures: 17, 2008 .
  35. 35.0 35.1 Andreas, B.; Azuma, Y.; Bartl, G.; Becker, P.; Bettin, H.; Borys, M.; Busch, I.; Gray, M.; Fuchs, P.; Fujii, K.; Fujimoto, H.; Kessler, E.; Krumrey, M.; Kuetgens, U.; Kuramoto, N.; Mana, G.; Manson, P.; Massa, E.; Mizushima, S.; Nicolaus, A.; Picard, A.; Pramann, A.; Rienitz, O.; Schiel, D.; Valkiers, S.; Waseda, A., An accurate determination of the Avogadro constant by counting the atoms in a 28Si crystal, Phys. Rev. Lett., 2011, 106 (3): 030801 (4 pages), Bibcode:2011PhRvL.106c0801A, doi:10.1103/PhysRevLett.106.030801 .

外部链接