航天器推进

求闻百科,共笔求闻
NASA太空中心里试验中的RS-68发动机

太空飞行器推进是任何加速太空飞行器人造卫星的方法,目前已知具有许多方式,每一种方式都有弱点与优点。目前许多推进方式是采用火箭

推进方法

利用行星引力减速
利用行星引力加速的示意图,现在的太阳系内航行非常依赖这种方法加速

火箭发动机

喷气发动机

太阳帆的想像图

电磁加速器

推进设备

可能违背物理法则的推进系统

不同的方法

航天器推进
方法 有效排气
速度

(km/s)
推力
(N)
持续时间 最大ΔV
(km/s)
技术就绪指数
(9成最高,1为最低)
固态火箭 1 - 4 103 - 107 分钟 ~ 7 9:已经过实际飞行验证
混合火箭 1.5 - 4.2 <0.1 - 107 分钟 > 3 9:已经过实际飞行验证
单装药火箭 (装药) 1 - 3 0.1 - 100 毫秒-分钟 ~ 3 9:已经过实际飞行验证
液态火箭 1 - 4.7 0.1 - 107 分钟 ~ 9 9:已经过实际飞行验证
静电离子推力器 15 - 210[1] 10−3 - 10 月/年 > 100 9:已经过实际飞行验证
霍尔推力器 (HET) 8 - 50 10−3 - 10 月/年 > 100 9:已经过实际飞行验证[2]
Resistojet rocket 2 - 6 10−2 - 10 分钟 ? 8: 已经过实际飞行验证 [3]
电弧喷射引擎 4 - 16 10−2 - 10 分钟 ? 8: 已经过实际飞行验证 [来源请求]
Field Emission Electric Propulsion (FEEP) 100[4]-130 10−6[4]-10−3[4] 月/年 ? 8: 已经过实际飞行验证 [4]
脉冲等离子体推力器 (PPT) ~ 20 ~ 0.1 ~2,000-10,000 小时 ? 7:原形于太空中经过试验
双模式推进火箭 1 - 4.7 0.1 - 107 毫秒-分钟 ~ 3 - 9 7: 原形于太空中经过试验
太阳帆 300,000:Light
145-750:Wind
9/km2 @ 1 AU
230/km2@0.2AU
10−10/km2@4 ly
不定 > 40 9:光压高度控制系统已通过实际飞行验证
6:仅在太空中成功展开过
5:Light-sail validated in lit vacuum
三装药火箭 2.5 - 5.3 0.1 - 107 分钟 ~ 9 6:原形于太空中经过试验[5]
磁等离子体动力推力器 (MPD) 20 - 100 100 星期 ? 6:1 kW推力型于太空中经过试验 [6]
核热火箭 9[7] 107[7] 分钟[7] > ~ 20 6: 原形于太空中经过试验
质量投射器 (for propulsion) 0 - ~30 104 - 108 ? 6:32MJ推力型于太空中经过试验
系留推进技术 N/A 1 - 1012 分钟 ~ 7 6:31.7 km型于太空中经过试验 [8]
空气放大火箭技术 5 - 6 0.1 - 107 秒-分钟 > 7? 6: 原形于太空中经过试验 [9][10]
液体燃料进气引擎 4.5 103 - 107 秒-分钟 ? 6: 原形于太空中经过试验
脉冲引射推进技术 (PIT) 10[11]-80[11] 20 ? 5:部分制品已在真空试验环境下通过实验[11]
可变比冲磁等离子体火箭 (VASIMR) 10 - 300 40 - 1,200 日 - 月 > 100 5:Component-200 kW 部分制品已在真空试验环境下通过实验
磁场摆动放大推进技术 10 - 130 0.1 - 1 日 - 月 > 100 5:部分制品已在真空试验环境下通过实验
太阳热力火箭 7 - 12 1 - 100 星期 > ~ 20 4:只在一般实验室进行过相关试验[12]
Radioisotope rocket 7 - 8 1.3 - 1.5 ? 4:只在一般实验室进行过相关试验
核-电火箭(As electric prop. method used) 可变 可变 可变 ? 4:Component-400kW 只在实验室进行过相关试验
猎户座计划 (近期核脉冲推进) 20 - 100 109 - 1012 ~30-60 3:Validated-900 kg proof-of-concept[13][14]
太空电梯 N/A N/A 不定 > 12 3:只在理论上证明可行
Reaction Engines SABRE 30/4.5 0.1 - 107 分钟 9.4 3:只在理论上证明可行
电动帆 145-750:Wind ? 不定 >40 3:只在理论上证明可行
磁化帆 145-750:Wind 70/40Mg[15] 不定 ? 3:只在理论上证明可行
Magnetic sail#Mini-magnetospheric plasma propulsion 200 ~1 N/kW ? 3:只在理论上证明可行[16]
Beam-powered/Laser(As prop. method powered by beam) 可变 可变 可变 ? 3:只在理论上证明可行
发射环/Orbital ring N/A ~104 分钟 >>11-30 2:Technology 尚处概念论证阶段
核脉冲推进 (代达罗斯计划) 20 - 1,000 109 - 1012 ~15,000 2:Technology concept formulated
气芯反应堆火箭 10 - 20 103 - 106 ? ? 2: 概念论证阶段
核盐水火箭 100 103 - 107 小时 ? 2: 概念论证阶段
裂变帆 ? ? ? ? 2: 概念论证阶段
裂变碎片火箭 15,000 ? ? ? 2: 概念论证阶段
核光子火箭 300,000 10−5 - 1 年-几十年 ? 2: 概念论证阶段
聚变火箭 100 - 1,000 ? ? ? 2: 概念论证阶段
反物质催化核脉冲推进 200 - 4,000 ? 日-星期 ? 2: 概念论证阶段
反物质火箭 10,000-100,000 ? ? ? 2:概念论证阶段
巴萨德冲压发动机 2.2 - 20,000 ? 不定 ~30,000 2:概念构想阶段
重力电磁环发射器 300,000:GEM ? ? <300,000 1:Basic principles observed & reported
阿库别瑞引擎 >300,000 ? ? 1:该概念相关原理刚刚被提出
方法 有效排气
速度

(km/s)
推力
(N)
持续时间 最大ΔV
(km/s)
技术就绪指数
(9成最高,1为最低)

行星和大气发射

某些发射方法不采用火箭或以火箭为辅助设备,这些称为非火箭航天发射

参考资料

  1. 存档副本. [2010-11-10]. 
  2. Hall effect thrusters have been used on Soviet/Russian satellites for decades.
  3. A Xenon Resistojet Propulsion System for Microsatellites (Surrey Space Centre, University of Surrey, Guildford, Surrey)
  4. 4.0 4.1 4.2 4.3 存档副本. [2011-07-07]. 
  5. 存档副本. [2010-02-10]. 
  6. 存档副本. 
  7. 7.0 7.1 7.2 存档副本. [2009-04-08]. 
  8. 存档副本. [2010-11-10]. 
  9. Gnom
  10. NASA GTX
  11. 11.0 11.1 11.2 The PIT MkV pulsed inductive thruster (PDF). [2010-11-10]. 
  12. Pratt & Whitney Rocketdyne Wins $2.2 Million Contract Option for Solar Thermal Propulsion Rocket Engine (Press release, June 25, 2008, Pratt & Whitney Rocketdyne)
  13. Operation Plumbbob. 2003-07 [2006-07-31]. 
  14. Brownlee, Robert R. Learning to Contain Underground Nuclear Explosions. 2002-06 [2006-07-31]. 
  15. 存档副本 (PDF). [2009-02-27]. 
  16. MagBeam. [2010-11-10]. 

外部链接