数论

求闻百科,共笔求闻

数论纯粹数学的分支之一,主要研究整数的性质。被誉为“最纯”的数学领域。

正整数按乘法性质划分,可以分成质数合数1,质数产生了很多一般人能理解却又悬而未解的问题,如哥德巴赫猜想孪生质数猜想等。即,很多问题虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。数论除了研究整数及质数外,也研究一些由整数衍生的数(如有理数)或是一些广义的整数(如代数整数)。

整数可以是方程式的解(丢番图方程)。有些解析函数(像黎曼ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。透过数论也可以建立实数和有理数之间的关系,并且用有理数来逼近实数(丢番图逼近)。

数论早期称为算术。到20世纪初,才开始使用数论的名称[1],而算术一词则表示“基本运算”,不过在20世纪的后半,有部分数学家仍会用“算术”一词来表示数论。1952年时数学家哈罗德·达文波特仍用“高等算术”一词来表示数论,戈弗雷·哈罗德·哈代爱德华·梅特兰·赖特在1938年写《数论介绍》简介时曾提到“我们曾考虑过将书名改为《算术介绍》,某方面而言是更合适的书名,但也容易让读者误会其中的内容”[2]

卡尔·弗里德里希·高斯曾说:“数学是科学的皇后,数论是数学的皇后。”[3]

数论初期的铺垫工作

数论早期铺垫有三大内容:

  1. 欧几里得证明素数无穷多个。
  2. 寻找素数的埃拉托斯特尼筛法;欧几里得求最大公约数的辗转相除法
  3. 公元420至589年(中国南北朝时期)的孙子定理

以上工作成为现代数论的基本框架。

数论中期工作

在中世纪时,除了1175年至1200年住在北非和君士坦丁堡斐波那契有关等差数列的研究外,西欧在数论上没有什么进展。

数论中期主要指15-16世纪到19世纪,是由费马梅森欧拉高斯勒让德黎曼希尔伯特等人发展的。最早的发展是在文艺复兴的末期,对于古希腊著作的重新研究。主要的成因是因为丢番图的《算术》(Arithmetica)一书的校正及翻译为拉丁文,早在1575年Xylander曾试图翻译,但不成功,后来才由Bachet在1621年翻译完成。

早期的现代数论

费马

费马

皮埃尔·德·费马(1601–1665)没有著作出版,他在数论上的贡献几乎都在他写给其他数学家的信上,以及书旁的空白处[4]。费马的贡献几乎没有数论上的证明[5],不过费马重复的使用数学归纳法,并引入无穷递降法

费马最早的兴趣是在完全数相亲数,因此开始研究整数因数,这也开始1636年之后的数学研究,也接触到当时的数学社群[6]。他已在1643年研读过巴歇版本的丢番图著作,他的兴趣开始转向丢番图方程平方数的和[7]

费马在数论上的贡献有:

  • 费马小定理 (1640)[8],若不是质数的倍数,则
  • 互质,则无法被任何除4后同余-1的质数整除[9],而且每个除4后同余1的质数都可以表示为.[10],这二个是在1640年证明的,在1649年他在写给惠更斯的信上提到他用无穷递降法证明的第二个问题[11],费马和福兰尼可在其他平方形式上也有一些贡献,不过其中有些错误及不严谨之处[12]
  • 向英国的数学家提出了求解的挑战(1657年),但在几个月后就由Wallis及Brouncker证明[13]。费马认为他们的证明有效,但用了一个在其中未经证明的算法,费马自己是由无穷递降法找到证明。
  • 发展许多找亏格0或1曲线上点的方法,作法类似丢番图,有许多特殊的步骤,使用了切线法构建曲线,而不是用割线法[14]
  • 证明不存在非寻常的正整数解。

费马在1637年声称(费马最后定理)证明了对于大于2的任意整数,不存在 的非寻常的正整数解(目前已知唯一的证明是由数学家安德鲁·怀尔斯及其学生理查·泰勒于1994年完成的证明),但只在一本丢番图著作的旁边写到,而且他没有向别人宣称他已有了证明[15]

欧拉

欧拉

欧拉(1707–1783)对数论的兴趣最早是由他的朋友哥德巴赫所引发,让他开始专注在费马的一些研究上[16][17],在费马没有使当代的数学家注意此一主题后,欧拉的出现称为“现代数论的重生”[18]。欧拉数论的贡献包括以下几项[19]

  • 费马研究的证明,包括费马小定理(欧拉延伸到非质数的模数),以及当且仅当,这项研究可推导到所有整数都可以表示为四个平方数的证明(第一个完整证明是由约瑟夫·拉格朗日提出,费马很快的也提出证明),和没有非零整数解的证明,表示为费马最后定理时成立,欧拉用类似方式证明了的情形。
  • 佩尔方程,最早误以为是欧拉证明[20],欧拉也写了连分数和佩尔方程的关系[21]
  • 二次式,继费马之后,欧拉继续研究哪些质数可以表示为,其中有些显示二次互反律的性质[22] [23][24]
  • 丢番图方程欧拉研究一些亏格为0或1的丢番图方程[25][26],特别的是他研读丢番图的著作,试图要找到系统化的方法,但时机尚不成熟,几何数论才刚形成而已[27]。欧拉有注意到丢番图方程和椭圆积分之间的关系[27]

分支

初等数论
意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余。重要的结论包括中国余数定理费马小定理二次互反律等等。
解析数论
借助微积分复分析的技术来研究关于整数的问题[28],主要又可以分为积性数论加性数论两类。积性数论借由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法圆法等等都是属于这个范畴的重要议题。
代数数论
引申代数数的话题,关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间有相当关联,比如类域论(class field theory)就是此间的颠峰之作。
算术代数几何
研究有理系数多变数方程组的有理点,其结构(主要是个数)和该方程组对应的代数簇的几何性质之间的关系,有名的费马最后定理、莫德尔猜想(法尔廷斯定理)、Weil猜想,和千禧年大奖难题中的贝赫和斯维讷通-戴尔猜想都属此类。
几何数论
主要在于透过几何观点研究整数(在此即格子点)的分布情形。最著名的定理为闵可夫斯基定理
计算数论
借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。
超越数论
研究数的超越性,其中对于欧拉常数与特定的黎曼ζ函数值之研究尤其令人感到兴趣。
组合数论
利用组合和几率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由保罗·埃尔德什开创的思路。
模形式
数学上一个满足一些泛函方程与增长条件、在上半平面上的(复)解析函数

应用

参考资料

  1. Heath, Thomas L. A History of Greek Mathematics, Volume 1: From Thales to Euclid. Oxford: Clarendon Press. 1921. 
  2. Apostol, Tom M. An introduction to the theory of numbers. (Review of Hardy & Wright.) Mathematical Reviews (MathSciNet) MR0568909. American Mathematical Society. n.d. [2013-05-06]. 
  3. The Queen of Mathematics. [2014-09-30]. 
  4. Weil 1984,第45–46页.
  5. Weil 1984,第118页,数论比其他数学领域容易出现这样的情形(说明在Mahoney 1994,第284页)
  6. Mahoney 1994,第48, 53–54页
  7. Weil 1984,第53页.
  8. Tannery & Henry 1891,Vol. II, p. 209, Letter XLVI from Fermat to Frenicle, 1640, cited in Weil 1984,第56页
  9. Tannery & Henry 1891,Vol. II, p. 204, cited in Weil 1984,第63页
  10. Tannery & Henry 1891,Vol. II, p. 213.
  11. Tannery & Henry 1891,Vol. II, p. 423.
  12. Weil 1984,第80, 91–92页.
  13. Weil 1984,第92页.
  14. Weil 1984,Ch. II, sect. XV and XVI.
  15. Weil 1984,第104页.
  16. Weil 1984,第2, 172页.
  17. Varadarajan 2006,第9页.
  18. Weil 1984,第2页 and Varadarajan 2006,第37页
  19. Varadarajan 2006,第39页 and Weil 1984,第176–189页
  20. Weil 1984,第174页
  21. Weil 1984,第183页.
  22. Varadarajan 2006,第44–47页.
  23. Weil 1984,第177–179页.
  24. Edwards 1983,第285–291页.
  25. Varadarajan 2006,第55–56页.
  26. Weil 1984,第179–181页.
  27. 27.0 27.1 Weil 1984,第181页.
  28. Apostol, Tom M., Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, 1976, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001 

参考书目

  • Weil, André. Number theory: an approach through history – from Hammurapi to Legendre,. Boston: Birkhäuser. 1984. ISBN 978-0-8176-3141-3. 
  • Mahoney, M. S. The mathematical career of Pierre de Fermat, 1601–1665 Reprint, 2nd. Princeton University Press. 1994. ISBN 978-0-691-03666-3. 
  • Tannery, Paul; Henry, Charles (eds.); Fermat, Pierre de. Oeuvres de Fermat. (4 Vols.). Paris: Imprimerie Gauthier-Villars et Fils. 1891 (法语及拉丁语).  Volume 1 Volume 2 Volume 3 Volume 4 (1912)
  • Varadarajan, V. S. Euler through time: a new look at old themes. American Mathematical Society. 2006. ISBN 978-0-8218-3580-7. 
  • {{cite journal
|last=Edwards
|first=Harold M.